2nde Devoir Surveillé n° 6

- Durée 1 h
- Calculatrices interdites

	Barème	:
ı		

1)6 pts 2)6 pts 3)6 pts 4)6 pts note sur 24: note sur 20:

Nom:

Commentaires: Lisez l'énoncé en entier avant de commencer et répondez bien aux questions qui vous sont demandées. Vous pouvez faire les exercices dans l'ordre que vous souhaitez . La rédaction est importante . Soyez propre et clair . Bon courage ...

Ex 1: (1 point par ligne juste) Pour chacune des questions suivantes, entourer la (ou les) bonne(s) réponse(s):

ABCD est un parallélogramme :		A	В	C
1	Soit I est le milieu du segment $[AC]$. On a alors :	$\overrightarrow{DC} + \overrightarrow{DA} = 2 \overrightarrow{IB}$	C est l'image de D par la translation de vecteur \overrightarrow{IB} suivie de la translation de vecteur \overrightarrow{AI}	$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$
2	Soit le point F défini par $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AD}$. On a alors :	La translation de vecteur \overrightarrow{DF} transforme A en B .	La translation de vecteur \overrightarrow{AB} transforme D en F .	F et D sont confondus.
3	Soit le point E image du point A par la translation de vecteur \overrightarrow{DB} . On a alors :	ABED parallélogramme	$\overrightarrow{EB} = \overrightarrow{AD}$	B est le milieu de $[EC]$

Dans le repère (O, I, J) , on a : $A(1; 2)$, $B(3; 1), C(-1; -2), D(2; -1)$ et $E(6; 2)$		A	В	C
4	Soit I le milieu du segment $[AD]$. On a :	I(0,5;-1,5)	$\overrightarrow{ID} = \frac{1}{2} \overrightarrow{DA}$	I (1,5;0,5)
5	Le vecteur \overrightarrow{BC} a pour coordonnées :	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	les mêmes coordonnées que le vecteur \overrightarrow{DE}
6	Soit M le point défini par l'égalité $\overline{AM} = \frac{1}{3} \overline{BC}$:	\overline{BM} et \overline{AC} sont colinéaires.	$M\left(-\frac{1}{3};1\right)$	$M\left(-\frac{1}{3};-\frac{5}{3}\right)$

Ex 2:

Dans le repère (O, I, J), on a : A(-4; -3), B(4; 5), C(0; -7) et M(-2; -1)

On fera une figure que l'on complétera au cours de l'exercice.

- 1) Montrer que le point M appartient à la droite (AB).
- $\bf 2$) On considère les points P et Q définis par :

$$\overrightarrow{CQ} = \frac{3}{4} \overrightarrow{CA}$$
 et $\overrightarrow{CP} = \frac{1}{4} \overrightarrow{CB}$

- a) Déterminer les coordonnées des points P et Q
- **b**) Que peut-on dire des droites \overrightarrow{MP} et \overrightarrow{AC} ? Justifier.

Compléter le égalités suivantes en utilisant les points de la figure :

1)
$$\overrightarrow{IB} = \overrightarrow{\ldots A} + \overrightarrow{A \ldots}$$

1)
$$\overrightarrow{IB} = \overrightarrow{\ldots A} + \overrightarrow{A} : ...$$

2) $\overrightarrow{HG} + \overrightarrow{\ldots} = \overrightarrow{HF}$
3) $\overrightarrow{D} : + \overrightarrow{C} : = \overrightarrow{\ldots B}$
4) $\overrightarrow{E} : + \overrightarrow{\ldots E} = \overrightarrow{\ldots}$

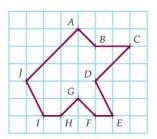
$$\mathbf{2)} \; \overrightarrow{HG} + \overrightarrow{\dots} = \overrightarrow{HH}$$

4)
$$\overrightarrow{E} \dots + \overrightarrow{\dots} \overrightarrow{E} = \overrightarrow{\dots}$$

5)
$$\overrightarrow{A...} = \overrightarrow{A...} + \overrightarrow{B...} + \overrightarrow{CM}$$

6) $\overrightarrow{FE} + = \overrightarrow{0}$

6)
$$\overrightarrow{FE} + \dots = \overrightarrow{0}$$



Ex 4:

Le réseau ci-dessous a un maillage rectangulaire. Exprimer chacun des vecteurs suivants sous la forme

d'un seul vecteur.

4)
$$\overrightarrow{AB} + \overrightarrow{AL} + \overrightarrow{AE}$$

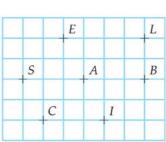
2)
$$\overrightarrow{AB} + \overrightarrow{BL} + \overrightarrow{LA}$$

5)
$$\overrightarrow{CL} - \overrightarrow{IB}$$

3)
$$\overrightarrow{AB} - \overrightarrow{AL}$$

1) $\overrightarrow{AB} + \overrightarrow{AL}$

6)
$$\overrightarrow{AE} - \left(\overrightarrow{CA} + \overrightarrow{SC}\right)$$



Ex 1: (1 point par ligne juste)

Pour chacune des questions suivantes, entourer la (ou les) bonne(s) réponse(s) :

ABCD est un parallélogramme :		A	В	C
1	Soit I est le milieu du segment $[AC]$. On a alors :	$\overrightarrow{DC} + \overrightarrow{DA} = 2 \overrightarrow{IB}$	C est l'image de D par la translation de vecteur \overrightarrow{IB} suivie de la translation de vecteur \overrightarrow{AI}	$\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$
2	Soit le point F défini par $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AD}$. On a alors :		La translation de vecteur \overline{AB} transforme D en F .	F et D sont confondus.
3	Soit le point E image du point A par la translation de vecteur \overrightarrow{DB} . On a alors :	ABED parallélogramme	$\overrightarrow{EB} = \overrightarrow{AD}$	B est le milieu de $[EC]$

Dans le repère (O, I, J) , on a : $A(1; 2)$, $B(3; 1)$, $C(-1; -2)$, $D(2; -1)$ et $E(6; 2)$		A	В	С
4	Soit I le milieu du segment $[AD]$. On a :	I(0,5;-1,5)	$\overrightarrow{ID} = \frac{1}{2} \overrightarrow{DA}$	I (1,5;0,5)
5	Le vecteur \overrightarrow{BC} a pour coordonnées :	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$	$\binom{4}{3}$	les mêmes coordonnées que le vecteur $\overline{D}\underline{\tilde{E}}$
6	Soit M le point défini par l'égalité $\overline{AM} = \frac{1}{3} \overline{BC}$:	\overline{BM} et \overline{AC} sont colinéaires.	$M\left(-\frac{1}{3};1\right)$	$M\left(-\frac{1}{3};-\frac{5}{3}\right)$

Ex 2:

Dans le repère (O , I , J), on a : A (-4;-3), B (4;5), C (0;-7) et M (-2;-1)

On fera une figure que l'on complètera au cours de l'exercice.

1) Montrer que le point M appartient à la droite (AB)

$$\overline{AM}$$
 $\binom{2}{2}$ et \overline{AB} $\binom{8}{8}$
Ainsi $\overline{AB} = 4$ \overline{AM} et $M \in (AB)$

 $\bf 2$) On considère les points P et Q définis par :

$$\overrightarrow{CQ} = \frac{3}{4} \overrightarrow{CA}$$
 et $\overrightarrow{CP} = \frac{1}{4} \overrightarrow{CB}$

a) Déterminer les coordonnées des points P et Q

On a
$$\overrightarrow{CA} \begin{pmatrix} -4 \\ 4 \end{pmatrix}$$
 et $\overrightarrow{CQ} \begin{pmatrix} x_Q \\ y_Q + 7 \end{pmatrix}$

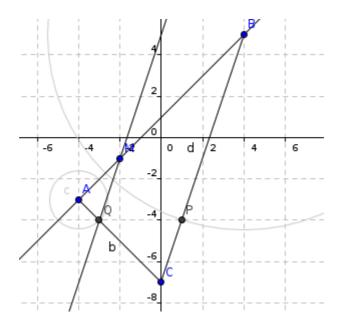
$$\overrightarrow{CQ} = \frac{3}{4} \overrightarrow{CA} \iff \begin{cases} x_Q = -3 \\ y_Q + 7 = 3 \end{cases} \Leftrightarrow \begin{cases} x_Q = -3 \\ y_Q = -4 \end{cases}$$

De la même façon on trouve P(1; -4)

b) Que peut-on dire des droites \overrightarrow{MP} et \overrightarrow{AC} ? Justifier.

On a
$$\overline{MP}\begin{pmatrix} 3 \\ -3 \end{pmatrix}$$
 et $\overline{AC}\begin{pmatrix} 4 \\ -4 \end{pmatrix}$

On en déduit que $\overline{MP} = \frac{3}{4} \overline{AC}$ et que les droites (MP) et (AC) sont parallèles.



<u>Ex 3:</u>

$$\mathbf{1)} \ \overrightarrow{IB} = \overrightarrow{IA} + \overrightarrow{AB}$$

$$2) \overrightarrow{HG} + \overrightarrow{GF} = \overrightarrow{HF}$$

3)
$$\overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB}$$

4)
$$\overrightarrow{EF} + \overrightarrow{GE} = \overrightarrow{GF}$$
 ou $\overrightarrow{ED} + \overrightarrow{AE} = \overrightarrow{AD}$ ou \cdots

5)
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CM}$$

6)
$$\overrightarrow{FE} + \overrightarrow{EF} = \overrightarrow{0}$$

<u>Ex 4:</u>

