Définition:

On appelle radian (rad) la mesure de l'angle au centre qui intercepte, sur un cercle de rayon R , un arc de longueur R.

CALCULATRICE:

Il faut bien choisir l'unité : **degré** ou **radian**

	Les mesures d'un angle en radian et en degré sont proportionnelles								
ı	mesures en degré	180	360	90	45	60	30		
	mesures en radian	π	2 π	$\frac{\pi}{2}$	<u>π</u> 4	<u>π</u> 3	<u>π</u> 6		



Le sens direct est le sens contraire des aiguilles d'une montre

L'enroulement de la droite numérique :

À tout réel x, on associe un point M du cercle trigonométrique par enroulement de la droite des réels. Ce point M est unique.

- L'abscisse x_M du point M est le **cosinus** de x (noté cos x)
- L'ordonnée y_M du point M est le sinus de x (noté sin x)

Un cercle trigonométrique est un cercle orienté dans le sens direct et de rayon 1.

<u>Lien avec les formules dans un triangle rectangle :</u>

Dans le triangle HOM rectangle en H, on a :

$$\cos \widehat{HOM} = \frac{OH}{OM} = \frac{x_M}{1} = \cos x$$
 et $\sin \widehat{HOM} = \frac{HM}{OM} = \frac{y_M}{1} = \sin x$

Valeurs remarquables:

x (en degré)	0	30	45	60	90
x (en radian)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0 _

Astuce :

- On écrit 0, 1, 2, 3, 4 dans chacune des cases - puis on applique la racine carrée - et on divise par 2
 - C'est les mêmes résultats que pour le sin, mais dans l'autre sens

Propriétés:

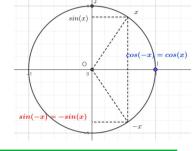
On note:

$$\cos^2 x = (\cos(x))^2$$

$$\sin^2 x = (\sin(x))^2$$

Pour tout réel x, on a :

- $\forall k \in \mathbb{Z}$, $\cos(x+2k\pi) = \cos(x)$ et $\sin(x+2k\pi) = \sin(x)$
- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$
- $\sin^2 x + \cos^2 x = 1$
- $\cos(-x) = \cos x$ et $\sin(-x) = -\sin x$



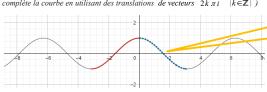
La fonction cosinus:

$\frac{\text{Parité:}}{\cos(-x) = \cos x}$

Périodicité: $\cos(x+2\pi) = \cos x$

- La **fonction cosinus**, notée cos, est la fonction définie sur \mathbb{R} par $x \mapsto \cos(x)$
- La fonction cos est paire. (La représentation graphique de la fonction cos admet donc l'axe des ordonnées pour axe de symétrie)
- La fonctions cos est périodique de période 2π (Il suffit de représenter la courbe sur un intervalle d'amplitude 2π , puis on complète la courbe en utilisant des translations de vecteurs $2k\pi i$ $(k \in \mathbb{Z})$)

 Grâce au cercle trigonométrique.



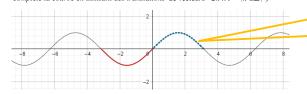
Ces deux courbes s'appellent des sinusoïdes

La fonction sinus:

Parité: $\sin(-x) = -\sin x$ Périodicité:

 $\frac{\text{Periodicite:}}{\sin(x+2\pi)} = \sin x$

- La **fonction sinus**, notée sin, est la fonction définie sur \mathbb{R} par $x \mapsto \sin(x)$
- La fonction sin est impaire. (La représentation graphique de la fonction sin admet donc l'origine du repère pour centre de symétrie)
- La fonctions sin est périodique de période 2π (Il suffit de représenter la courbe sur un intervalle d'amplitude 2π , puis on complète la courbe en utilisant des translations de vecteurs $2k\pi i$ $(k \in \mathbb{Z})$)



Grâce au cercle trigonométrique, on voit que la fonction sin est croissante sur $\left[0; \frac{\pi}{2}\right]$ puis décroissante sur $\left[\frac{\pi}{2}; \pi\right]$

on voit que la fonction cos est décroissante sur $[0; \pi]$