DERIVATION, PRIMITIVES D'UNE FONCTION

1) DERIVEES SUCCESSIVES

Définition:

Soit f est une fonction dérivable sur un intervalle I.

Sa fonction dérivée f 's'appelle <u>dérivée première</u> (ou d'ordre 1) de f.

Lorsque f' est dérivable sur I, sa fonction dérivée est notée f''. f'' est appelée <u>dérivée seconde</u> (ou dérivée d'ordre 2) de f.

Par itération, pour tout entier naturel $n \ge 2$, on définie <u>la fonction dérivée n-ième</u> (ou d'ordre n) comme étant la fonction dérivée de la fonction d'ordre n-1.

Notation: $f^{(1)} = f'$ et pour tout $n \ge 2$, $f^{(n)} = (f^{(n-1)})'$.

Exemple:

 $f: x \longmapsto \cos x$ est dérivable sur IR et on a $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f^{(3)}(x) = \sin x$, $f^{(4)}(x) = \cos x$ et ainsi de suite...

2) DERIVEE D'UNE FONCTION COMPOSEE

A) CAS GENERAL

Propriété:

Soit g une fonction dérivable sur un intervalle J et u est une fonction dérivable sur un intervalle I, telle que pour tout x de I, u(x) appartient à J.

Alors la fonction f définie par $f(x) = (g \circ u)(x) = g(u(x))$ est dérivable sur I et pour tout x de I,

$$f'(x) = u'(x) \times g'(u(x))$$

Cette propriété reste vraie lorsque I et J sont des réunions d'intervalles.

Preuve:

Soit $a \in I$. Pour tout réel h non nul tel que $a + h \in I$, on a :

$$\frac{f(a+h)-f(a)}{h} = \frac{g(u(a+h))-g(u(a))}{h} = \frac{g(u(a+h))-g(u(a))}{u(a+h)-u(a)} \times \frac{u(a+h)-u(a)}{h}$$
Or u est dérivable en a . On a donc $\lim_{h\to 0} \frac{u(a+h)-u(a)}{h} = u'(a)$

D'autre part u est dérivable en a, u est donc continue en a, ce qui donne : $\lim_{h \to 0} u (a + h) = u (a)$ On a également $u (a) \in J$ et g est dérivable sur J, d'où : $\lim_{X \to u(a)} \frac{g(X) - g(u(a))}{X - u(a)} = g'(u(a))$

On obtient alors $\lim_{h \to 0} \frac{g(u(a+h)) - g(u(a))}{u(a+h) - u(a)} = g'(u(a))$ Ainsi $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = u'(a) \times g'(u(a))$

Ainsi
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = u'(a) \times g'(u(a))$$

On en déduit que $g \circ u$ est dérivable en a et que $(g \circ u)'(a) = u'(a) \times g'(u(a))$

Remarque:

On retrouve ainsi une propriété vue en première : si g(x) = f(ax + b), alors g'(x) = af'(ax + b)

Exemple: Déterminer la dérivée de la fonction f définie sur \mathbb{R}^* par $f(x) = \sin \frac{1}{x}$

Pour tout $x \in \mathbb{R}^*$, on pose : $f(x) = (g \circ u)(x)$ où $g: x \longmapsto \sin x$ et $u: x \longmapsto \frac{1}{x}$

La fonction g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a $g'(x) = \cos x$

La fonction u est dérivable sur \mathbb{R}^* et pour tout $x \in \mathbb{R}^*$, on a $u'(x) = \frac{-1}{x^2}$

(Pour tout $x \neq 0$, on a bien sûr $u(x) \in \mathbb{R}$... Dans la pratique, quand la fonction g est dérivable sur \mathbb{R} , cette vérification n'est pas nécessaire) On en déduit que f est dérivable sur \mathbb{R}^* et pour tout $x \neq 0$, on a $f'(x) = \frac{-1}{x^2} \cos \frac{1}{x}$

B) DERIVEE DE \sqrt{u}

Propriété:

Soit u une fonction strictement positive et dérivable sur un intervalle I . Alors la fonction f définie sur I par $f(x) = \sqrt{u(x)}$ est dérivable sur I, et pour tout x de I, on a :

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

Cette propriété reste vraie lorsque I est une réunion d'intervalles.

Preuve:

On a
$$f(x) = g(u(x))$$
 où $g: x \longrightarrow \sqrt{x}$

g est dérivable sur
$$\mathbb{R}_{+}^{*}$$
 et pour tout $x > 0$, on a g'(x) = $\frac{1}{2\sqrt{x}}$

Pour tout x de I, u(x) > 0, donc la fonction $f = g \circ u$ est dérivable sur I, et pour tout x de I, on a :

$$f'(x) = u'(x) \times g'(u(x)) = \frac{u'(x)}{2\sqrt{u(x)}}$$

C) **DERIVEE DE** u^n (où n est un entier relatif non nul)

Propriété:

Soit u une fonction dérivable sur un intervalle I et n un entier naturel non nul. Alors la fonction f définie sur I par $f(x) = [u(x)]^n$ est dérivable sur I, et pour tout x de I, on a :

$$f'(x) = n u'(x) [u(x)]^{n-1}$$

Preuve:

On a
$$f(x) = g(u(x))$$
 où $g: x \longrightarrow x^n$

g est dérivable sur IR et pour tout $x \in IR$, on a $g'(x) = n x^{n-1}$

Ainsi pour tout x de I la fonction $f = g \circ u$ est dérivable sur I et :

$$f'(x) = u'(x) \times g'(u(x)) = n u'(x) [u(x)]^{n-1}$$

Remarque : Cas où n < 0 et <u>u</u> ne s'annule en aucun point de I :

On a
$$f(x) = [u(x)]^n = \frac{1}{[u(x)]^{-n}}$$

Puisque -n > 0, on peut appliquer la formule de la dérivée de l'inverse d'une fonction et on obtient : $f'(x) = -\frac{([u(x)]^{-n})^{-1}}{([u(x)]^{-n})^{2}}$

Or
$$([u(x)]^{-n})' = -nu'(x)[u(x)]^{-n-1} \operatorname{donc} f'(x) = -\frac{-nu'(x)[u(x)]^{-n-1}}{([u(x)]^{-n})^2} = nu'(x)[u(x)]^{n-1}$$

On obtient également $f'(x) = n u'(x) [u(x)]^{n-1}$

3) PRIMITIVES

A) Définition

Définition

Soit f une fonction définie sur un intervalle I

Une primitive de f sur I est une fonction F dérivable sur I, telle que pour tout x dans I, F'(x) = f(x).

Une fonction est souvent notée par une lettre minuscule et l'usage est de noter une primitive (si elle existe) par la majuscule associée.

B) Lien entre deux primitives

Propriété

Soit f une fonction définie sur un intervalle I.

Si F est une primitive de f sur I , alors f admet une infinité de primitives.

Toute autre primitive de f sur I est définie par G (x) = F (x) + k où $k \in \mathbb{R}$

On dit que deux primitives d'une fonction sur un intervalle diffèrent d'une constante

Preuve

• F est dérivable sur I et F' = f. La fonction G est aussi dérivable sur I avec G' = F' = f.

Donc G est une primitive de f sur I.

• Inversement, si G est une primitive de f sur I alors G' = f = F' d'où G' - F' = 0.

La dérivée de G - F est nulle sur l'intervalle I donc G - F est constante sur I . Il existe donc un réel k tel que pour tout x de I , G(x) - F(x) = k , d'où le résultat.

Propriété

Soit f une fonction admettant des primitives sur I.

Pour tout couple de réel (x_0 ; y_0) où x_0 est un réel donné dans I et y_0 est un réel quelconque, il existe une primitive et une seule G de f sur I telle que G (x_0) = y_0

Preuve:

En effet, si F est une primitive de f sur I, toute autre primitive G est définie par G (x) = F(x) + k où $k \in \mathbb{R}$ La condition initiale nous permet alors d'obtenir une unique valeur de k.

C) Primitives d'une fonction continue (admis)

Propriété

Si f est une fonction continue sur un intervalle I, alors f admet des primitives sur I.

4) CALCULS DE PRIMITIVES

Les opérations sur les fonctions dérivables et la définition d'une primitive conduisent aux résultats suivants :

- $-\sin F$ et G sont des primitives des fonctions f et g sur un intervalle I, alors F + G est une primitive de f + g sur I.
- si F est une primitive de la fonction f sur un intervalle I et λ un réel, alors λ F est une primitive de λf sur I.

De même, les résultats connus sur les dérivées des fonctions usuelles donnent par « lecture inverse » le tableau des primitives suivant :

fonction f	primitive F	sur
а	a x	IR
$x^{n} (où n \in \mathbb{Z} - \{-1\})$	$\frac{x^{n+1}}{n+1}$	$\mathbb{R} \text{ si } n \ge 0$ $\mathbb{R}^* \text{ et } \mathbb{R}^*_+ \text{ si } n < -1$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	IR*
$\sin x$	- cos x	IR
$\cos x$	$\sin x$	IR
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	tan x	$] - \frac{\pi}{2} + k \pi; \frac{\pi}{2} + k \pi [(où k \in \mathbb{Z})]$

Le tableau suivant résume divers cas d'exploitation de la dérivée d'une fonction composée pour l'expression d'une primitive. Dans chaque cas, u est une fonction dérivable sur un intervalle I.

fonction f	primitive F	remarques
$u'u^n(où n \in \mathbb{Z}-\{-1\})$	$\frac{1}{n+1}u^{n+1}$	Si $n < -1$, une primitive de $u'u^n$ n'est définie que sur un intervalle I sur lequel u ne s'annule pas
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	<i>u</i> > 0 sur I
$x \longmapsto u(ax+b)(a \neq 0)$	$x \longmapsto \frac{1}{a} U(ax+b)$	U primitive de <i>u</i> sur I
$u' \times (v' \circ u)$	$v \circ u$	$v \circ u$ est dérivable sur I v dérivable sur u (I)