1ère	Pique-nique r	ı °

- Durée 1 h
- Calculatrices autorisées

Barème :	Nom:
1) 5 pts 2) 6 pts 3) 4 pts	
4) 3 pts 5) 2 pts	
, 1 , 1	

Répondre sur cette feuille

<u>Ex 1 : Vrai ou faux (réponse juste : + 0,5 / réponse fausse : -0,5 / pas de réponse : 0)</u>

		Réponses
1	Si $u_5 > u_4 > u_3 > u_2 > u_1 > u_0$, alors (u_n) est strictement croissante.	
2	Si (u_n) est positive, alors (u_n) est monotone.	
3	Une suite croissante est toujours minorée.	
4	Une suite peut être à la fois croissante et majorée.	
5	Si une suite (u_n) est décroissante alors $u_{1000} > u_{100} > u_{10}$	
6	Si une suite (u_n) est croissante alors $u_{-2} < u_{-1}$	
7	Soit une suite (u_n) et la fonction f telle que pour tout $n \in \mathbb{N}$, $u_n = f(n)$.	
	Si (u_n) est décroissante, alors f est décroissante sur \mathbb{R}^+ .	
8	Soit une suite (u_n) et la fonction f telle que pour tout $n \in \mathbb{N}$, $u_n = f(n)$.	
	Si f est décroissante sur \mathbb{R}^+ , alors (u_n) est décroissante.	
9	Un suite qui vérifie pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \ge 1$ est forcément croissante.	
10	Une suite croissante peut avoir une limite égale à -1000.	

 $\mathbf{\underline{Ex\ 2:}}$ Dans chaque cas, étudier la monotonie de la suite (u_n) .

1)
$$u_0 = 1$$
 et $u_{n+1} = u_n - 7n^2 + 6n - 5$

2)
$$u_n = \frac{n-5}{n}$$
 ($n \in \mathbb{N}^*$)

3)
$$u_n = \frac{2}{3^n}$$

1)
$$u_n = \frac{(-1)^n}{4} - 3$$

2)
$$u_n = \frac{n^2 + 1}{n^2 + 3}$$

Ex 4 : On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 4$ et la suite (u_n) définie sur \mathbb{N} par $\begin{cases} u_0 = 2 \\ u_{n+1} = f(u_n) \end{cases}$

1) Compléter le programme ci-dessous permettant de calculer et d'afficher u_{30} .

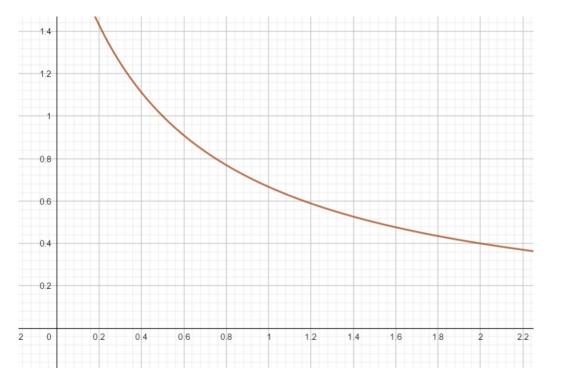
```
1 Def f(x):
2 return(x**2+2*x-4)
3 u=...
4 def terme(n):
5 for i in range (1, .....):
6 u=....
7 print(u)
8 terme(30)
```

2) Compléter, puis modifier les deux dernières lignes du programme afin qu'il affiche tous les termes de u_1 à u_{50} .

```
1 Def f(x):
2 return(x**2+2*x-4)
3 u=....
4 def terme(n):
5 for i in range (1,......):
6 u=......
```

Ex 5: On considère la fonction f définie pour $x \ne -0.5$, par $f(x) = \frac{1}{x+0.5}$ (dont la représentation graphique est donnée ci-dessous) et la suite (u_n) , définie par $\begin{cases} u_0 = 2 \\ u_n = f(u_n) \end{cases}$.

Représenter les premiers termes de la suite (u_n) sur les axes, puis conjecturer le comportement de la suite (variations et limites éventuelles).



Ex 1: Vrai ou faux (réponse juste : + 0,5 / réponse fausse : -0,5 / pas de réponse : 0)

1	Si $u_5 > u_4 > u_3 > u_1 > u_1 > u_0$, alors (u_n) est strictement croissante.	Faux
2	Si (u_n) est positive, alors (u_n) est monotone.	Faux
3	Une suite croissante est toujours minorée.	Vrai
4	Une suite peut être à la fois croissante et majorée.	Vrai
5	Si une suite (u_n) est décroissante alors $u_{1000} > u_{100} > u_{10}$	Faux
6	Si une suite (u_n) est croissante alors $u_{-2} < u_{-1}$	Faux
7	Soit une suite (u_n) et la fonction f telle que pour tout $n \in \mathbb{N}$, $u_n = f(n)$. Si (u_n) est décroissante, alors f est décroissante sur \mathbb{R}^+ .	Faux
8	Soit une suite (u_n) et la fonction f telle que pour tout $n \in \mathbb{N}$, $u_n = f(n)$. Si f est décroissante sur \mathbb{R}^+ , alors (u_n) est décroissante.	Vrai
9	Un suite qui vérifie pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \ge 1$ est forcément croissante.	Faux
10	Une suite croissante peut avoir une limite égale à -1000.	Vrai

Ex 2: 1) Pour tout $n \in \mathbb{N}$, on a: $u_{n+1} - u_n = -7n^2 + 6n - 5$

 $\Delta < 0$, $-7n^2 + 6n - 5$ est du signe de a = -7 donc $u_{n+1} - u_n < 0$ et (u_n) est strictement décroissante.

2) Pour tout
$$n \in \mathbb{N}^*$$
 , on a : $u_{n+1} - u_n = \frac{n+1-5}{n+1} - \frac{n-5}{n} = \frac{n(n-4) - (n+1)(n-5)}{n(n+1)} = \frac{5}{n(n+1)} > 0$ et (u_n) est donc strictement croissante

3) Pour tout
$$n \in \mathbb{N}$$
, on a: $\frac{u_{n+1}}{u_n} = \frac{\frac{2}{3^{n+1}}}{\frac{2}{3^n}} = \left(\frac{2}{3^{n+1}}\right)\left(\frac{3^n}{2}\right) = \frac{1}{3} < 1$. Comme $u_n > 0$, on a $u_{n+1} < u_n$ et (u_n) est donc strictement décroissante

Ex 3 : Dans chacun des cas, indiquer si la suite est minorée, majorée ou bornée.

1) Pour tout $n \in \mathbb{N}$, on a:

$$-1 \! \leqslant \! (-1)^n \! \leqslant \! 1 \ \ \, \Rightarrow \ \ \, -\frac{1}{4} \! \leqslant \! \frac{(-1)^n}{4} \! \leqslant \! \frac{1}{4} \ \ \, \Rightarrow \ \ \, -\frac{13}{4} \! \leqslant \! u_n \! \leqslant \! -\frac{11}{4}$$

Donc (u_n) est bornée.

Ex 4:

```
1)

Def f(x):
return(x**2+2*x-4)
u=2
def terme(n):
for i in range (1,n+1):
u=f(u)
print(u)
terme(30)
```

Ex 5:

La suite n'est ni croissante, ni décroissante. La suite semble tendre vers l'abscisse du point d'intersection de la courbe représentant la fonction f définie par $f(x) = \frac{1}{x+0,5}$ et la droite d'équation y=x.

2) Pour tout $n \in \mathbb{N}$, on a, clairement : $0 \le u_n \le 1$ Donc (u_n) est bornée.

```
2)

1  Def f(x):
2  return(x**2+2*x-4)
3  u=2
4  def terme(n):
5  for i in range (1,n+1):
6  u=f(u)
7  print(u)
8  terme(50)
```

