Pique-nique n ° 8

- Durée 2h

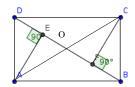
- Calculatrices de lycée autorisées

B	arème :	Nom:
1)	7 pts 2) 4 pts 3) 9 pts	

Répondre sur cette feuille Le trio				
Dériver la fonction f , définie par : $f(x) = \frac{\alpha}{x} + \beta$	factoriser: $4x^2(x-1)-8x(x-1)^3$	Écrire en python : x prend la longueur de la liste L		

Ex 1 : On considère un rectangle ABCD de centre O tel que AB=10 et AD=6.

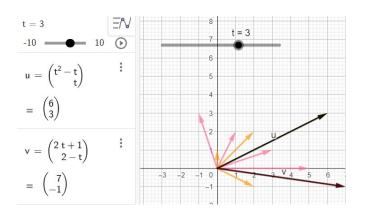
Les points E et F sont les projetés orthogonaux des points A et C sur la droites (BD). On se place dans le repère orthonormé $(O; \vec{i}, \vec{j})$ tel que \vec{i} et \overline{AB} sont colinéaires et de même sens et \vec{j} et \overline{AD} aussi. 1) En calculant de deux façons différentes le produit scalaire \overline{DB} . \overline{AC} , déterminer la valeur exacte de la longueur EF.



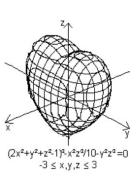
2) En déduire la valeur exacte de la longueur de ED.

3) En utilisant à nouveau le produit scalaire, déterminer une mesure en degré de l'angle BOC

Ex 2 : On se place dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. On considère les deux vecteurs $\vec{u} \begin{pmatrix} t^2 - t \\ t \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 t + 1 \\ 2 - t \end{pmatrix}$. Calculer t pour que \vec{u} et \vec{v} soient orthogonaux.

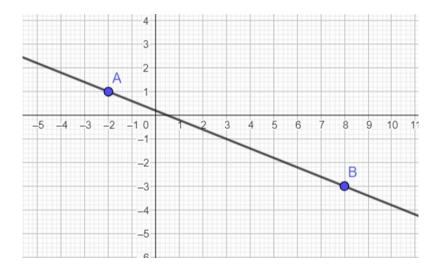


Ex 3 : On se place dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$. Soit les points A(-2;1) et B(8;-3). 1) En introduisant le milieu I de [AB], exprimer \overrightarrow{MA} . \overrightarrow{MB} en fonction de IM et AB.



3) En déduire l'ensemble $~F_2~$ des points M du plan tels que $~\overline{MA}$. $\overline{MB}~\leqslant$ -28

4) Déterminer l'ensemble $~F_3~$ des points M du plan, tels que $~\overline{\mbox{MA}}$. $\overline{\mbox{MB}}$ =0



Correction

Le trio			
Dériver la fonction f , définie par : $f(x) = \frac{\alpha}{x} + \theta$	factoriser: $4 x^2 (x-1) - 8 x (x-1)^3$	Écrire en python : x prend la longueur de la liste L	
$f(x) = -\frac{\alpha}{x^2}$	$\begin{vmatrix} 4x(x-1)(x-2(x-1)^2) = 4x(x-1)(x-2(x^2-2x+1)) \\ = 4x(x-1)(5x-2x^2-2) \end{vmatrix}$	x=len(L)	

<u>Ex 1:</u>

1) On a A(0;0), B(10;0) C(10,6) et D(0;6)

On obtient : \overrightarrow{DB} $\begin{pmatrix} 10 \\ -6 \end{pmatrix}$ et \overrightarrow{AC} $\begin{pmatrix} 10 \\ 6 \end{pmatrix}$

On a alors : \overrightarrow{DB} . \overrightarrow{AC} =10 × 10+(-6) × 6=64

D'autre part : \overrightarrow{DB} . $\overrightarrow{AC} = \overrightarrow{DB}$. \overrightarrow{EF} (par projection de \overrightarrow{EF} sur (DB)) = DB × EF (car \overrightarrow{DB} et \overrightarrow{EF} ont le même sens)

Or DB= $\sqrt{10^2+(-6)^2}=\sqrt{136}=2\sqrt{34}$

Ainsi $\overrightarrow{DB} \cdot \overrightarrow{AC} = 2\sqrt{34} \times EF$

On en déduit que : $2\sqrt{34} \times EF = 64 \iff EF = \frac{32}{\sqrt{34}}$ et donc $EF = \frac{32\sqrt{34}}{34} = \frac{16\sqrt{34}}{17}$

2) Par symétrie, on a DE=BF.

On en déduit que :

$$2DE+EF=BD \Rightarrow 2DE=2\sqrt{34}-\frac{16\sqrt{34}}{17}=\frac{18\sqrt{34}}{17} \Rightarrow DE=\frac{9\sqrt{34}}{17}$$

3) On a aussi : \overrightarrow{DB} . \overrightarrow{AC} =DB × AC × cos \widehat{BOC} = DB² × cos \widehat{BOC} =136 × cos \widehat{BOC}

Ainsi: $136 \times \cos \widehat{BOC} = 64$ et $\cos \widehat{BOC} = \frac{64}{136} = \frac{8}{17}$

Donc BOC ≈ 61,9°

Ex 2:

$$\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow (t^2 - t) \times (2t + 1) + t \times (2 - t) = 0 \Leftrightarrow 2t^3 + t^2 - 2t^2 - t - t^2 + 2t = 0 \Leftrightarrow 2t^3 - 2t^2 + t = 0$$
Ainsi

 $\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow t(2t^2-2t+1)=0 \Leftrightarrow t=0 \text{ ou } 2t^2-2t+1=0$

L'équation $2t^2-2t+1=0$ n'a pas de solution car $\Delta < 0$

La seule possibilité (pas très intéressante) est t=0

<u>Ex 3:</u>

1) On a:
$$\vec{MA} \cdot \vec{MB} = (\vec{MI} + \vec{IA}) \cdot (\vec{MI} + \vec{IB}) = (\vec{MI} + \vec{IA}) \cdot (\vec{MI} - \vec{IA}) = \vec{MI}^2 - \vec{IA}^2 = \vec{MI}^2 - \vec{IA}^2 = \vec{MI}^2 - (\vec{AB})^2 = \vec{IM}^2 - (\vec{AB$$

2) On a $AB^2 = (8-(-2))^2 + (-3-1)^2 = 10^2 + 4^2 = 116$

$$\overline{MA}$$
 . \overline{MB} =-28 \Leftrightarrow IM² - $\frac{AB^2}{4}$ = -28

$$\Leftrightarrow IM^2 = \frac{AB^2}{4} - 28$$

$$\Leftrightarrow IM^2 = \frac{116}{4} - 28$$

$$\Leftrightarrow$$
 IM=1 avec I(3;-1)

L'ensemble F_1 est donc le cercle de centre I et de rayon 1

3) $\, {\rm F}_2 \,$ est le disque de centre I et de rayon 1

4) F_3 est le cercle de diamètre [AB]

5) On a AB=
$$\sqrt{116}$$
=2 $\sqrt{29}$

On note H le projeté orthogonal de M sur (AB).

On a alors : \overrightarrow{AB} . \overrightarrow{AM} = \overrightarrow{AB} . \overrightarrow{AH} =AB \times AH (car \overrightarrow{AB} . \overrightarrow{AM} >0)

Ce qui donne : $8\sqrt{29} = 2\sqrt{29} \times AH \Leftrightarrow AH = 4$

Donc M est sur la droite perpendiculaire à (AB) passant par H, tel que

 \overrightarrow{AH} et \overrightarrow{AB} soient de même sens et AH=4.

La réciproque est évidente .

En effet, tout point de cette droite vérifie \overrightarrow{AB} . \overrightarrow{AM} = AB \times AH = $8\sqrt{29}$.

On en déduit que l'ensemble des points vérifiant \overrightarrow{AB} . \overrightarrow{AM} = $8\sqrt{29}$ est

la droite perpendiculaire à (AB) passant par H.

