Pique-nique n ° 2

- Durée 1h30
- Calculatrices de lycée autorisées

1) 6 pts 2) 5 pts 3) 4 pts 4) 5 pts

Nom:

Répondre sur cette feuille

2) P(B)

4) P($\overline{A \cup B}$)

Ex 2 : Dans tout l'exercice, les résultats seront arrondis, si nécessaire, au millième.

La chocolaterie « Choc'o » fabrique des tablettes de chocolat noir de 100 grammes, dont la teneur en cacao annoncée est de 85 %. À l'issue de la fabrication, la chocolaterie considère que certaines tablettes ne sont pas commercialisables : tablettes cassées, mal emballées, mal calibrées, etc. La chocolaterie dispose de deux chaînes de fabrication :

- la chaîne A, lente, pour laquelle la probabilité qu'une tablette de chocolat soit commercialisable est égale à 0,98.
- la chaîne B, rapide, pour laquelle la probabilité qu'une tablette de chocolat soit commercialisable est 0,95.

À la fin d'une journée de fabrication, on prélève au hasard une tablette et on note :

A l'évènement : « la tablette de chocolat provient de la chaîne de fabrication A »;

C l'évènement : « la tablette de chocolat est commercialisable ».

On note x la probabilité qu'une tablette de chocolat provienne de la chaîne A.

1) Construire un arbre représentant la situation.

2) Exprimer P(C) en fonction de x.

À l'issue de la production, on constate que 96 % des tablettes sont commercialisables et on retient cette valeur pour modéliser la probabilité qu'une tablette soit commercialisable dans la suite de l'exercice.

3) Justifier que la probabilité que la tablette provienne de la chaîne B est deux fois égale à celle que la tablette provienne de la chaîne A.

4) Les événements A et C sont-ils indépendants?

5) Une tablette n'est pas commercialisable : quelle est la probabilité qu'elle provienne de la chaîne A?

Ex 3 :Ci-dessous, on a représenté dans un tableau la répartition des licenciés d'un club de sport.

	Jeune	Adulte	Total
Homme	34	46	80
Femme	68	92	160
Total	102	138	240

1) On prélève au hasard la fiche de l'un des licenciés. On considère les événements : F : « Le licencié est une femme » et A : « Le licencié est un adulte » Justifier que les événements A et F sont indépendants.

- 2) On prélève désormais, au hasard, successivement et avec remise, deux fiches des licenciés. On note J_i :« le licencié de la ième fiche est une jeune femme »
- **a**) Que peut-on dire des probabilités de J_1 et J_2 ?
- \mathbf{c}) Calculer $P(J_1)$
- **c**) Déterminer la probabilité qu'il n'y ait aucune jeune femme parmi ces deux fiches.

Ex 4:

1) Une urne contient 12 boules vertes et 8 boules rouges Compléter la fonction suivante écrite en python simulant cinq tirages successifs avec remise d'une boule de cette urne.

```
1
   from random import randint
2
   def Urne():
3
     tirage=[]
4
     for i in range( ... ):
       if randint( ... , ... )<= ...
5
6
   tirage.append("...")
8
       else:
9
          tirage.append("verte")
     return(.....)
```

2) Quelle est la probabilité d'obtenir 5 boules rouges ?

3) Quelle serait cette probabilité si le tirage était sans remise ?

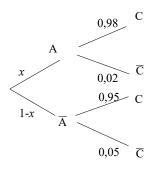
Correction:

Ex 1:

1)
$$P(A \cap B) = P(A) \times P_A(B) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$

3) $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{12}}{\frac{1}{4}} = \frac{1}{3}$
2) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\Rightarrow \frac{5}{12} = \frac{1}{4} + P(B) - \frac{1}{12}$
 $\Rightarrow P(B) = \frac{5}{12} - \frac{1}{4} + \frac{1}{12} = \frac{1}{4}$
4) $P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - \frac{5}{12} = \frac{7}{12}$

Ex 2:1)



 $\boldsymbol{2}$) A et $\;\overline{A}\;$ forment une partition de l'univers.

D'après le formule des probabilités totales, on a :

$$P(C) = P(A \cap C) + P(\overline{A} \cap \overline{C}) = P(A)P_AP(C) + P(\overline{A})P_{\overline{A}}P(C) = x0,98 + (1-x)0,95 = 0,98 \\ x + 0,95 - 0,95 \\ x = 0,95 + 0,03 \\ x$$

3) P(C)=0.96
$$\Leftrightarrow$$
 0.95+0.03 x=0.96 \Leftrightarrow 0.03 x=0.01 \Leftrightarrow x= $\frac{1}{3}$

On obtient donc $P(A) = \frac{1}{3}$.

On a alors
$$P(B)=P(\overline{A})=1-P(A)=\frac{2}{3}$$

On a bien P(B)=2P(A)

4) Clairement non: $P_A(C) \neq P(C)$

5)
$$P_{\overline{c}}(A) = \frac{P(A \cap \overline{C})}{P(\overline{C})} = \frac{\frac{1}{3} \times 0,02}{0,04} = \frac{1}{6}$$

$\mathbf{Ex} \mathbf{3} :$

1) Les 240 issues sont équiprobables. On a donc :

P(F)=
$$\frac{160}{240} = \frac{2}{3}$$
 et P(A)= $\frac{138}{240} = \frac{23}{40}$
P(F \cap A)= $\frac{92}{240} = \frac{23}{60}$ et P(F)P(A)= $\frac{2}{3} \times \frac{23}{40} = \frac{23}{60}$

A et F sont donc indépendants.

2) **a**)
$$P(J_1)=P(J_2)$$

b)On a
$$P(J_1) = \frac{68}{240} = \frac{17}{60}$$

c) Le prélèvement est avec remise, on peut donc considérer qu'il s'agit de la répétition de deux épreuves indépendantes.

Ainsi
$$P(\overline{J_1} \cap \overline{J_2}) = P(\overline{J_1}) P(\overline{J_2}) = \frac{43}{60} \times \frac{43}{60} = \frac{1849}{3600} \approx 0,5136$$

Ex 4:

1)

```
from random import randint
def Urne():
tirage=[]
for i in range(5):
if randint(1,20)<=8:
tirage.append("rouge")
else:
tirage.append("verte")
return(tirage)
```

2) Le tirage est avec remise, on peut donc considérer qu'il s'agit de la répétition de cinq épreuves indépendantes. La probabilité cherchée est donc : $\frac{8}{20} \times \frac{8}{20} \times \frac{8}{20} \times \frac{8}{20} \times \frac{8}{20} = \frac{32}{3125}$

3)
$$\frac{8}{20} \times \frac{7}{19} \times \frac{6}{18} \times \frac{5}{17} \times \frac{4}{16} = \frac{7}{1938}$$