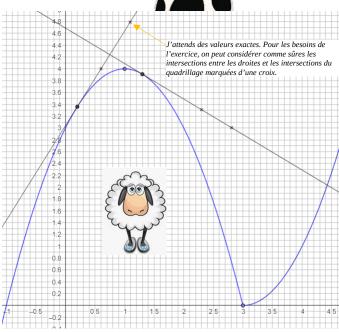
1) 5 pts 2) 6,5 pts 3) 4 pts 4) 7

pts (2,5 point en cadeau)

Répondre sur cette feuille

Ex 1 : On considère la courbe représentative C_f d'une fonction f .

1) En utilisant cette représentation graphique, déterminer :


f'(0,2)

f'(1)

f'(1,3)

f'(3)

2) Déterminer l'équation exacte de la tangente à la courbe au point A(1,3;3,9).

3) Déterminer l'ensemble des solutions de l'équation f'(x)=0 sur l'ensemble [0;4]

4) Déterminer l'ensemble des solutions de l'inéquation f'(x)>0 sur l'ensemble [0;4]

Ex 2 : On considère la fonction f définie par $f(x) = \frac{1-2x}{x^2+a}$ où $a \in \mathbb{R}$

a) Déterminer l'ensemble de définition de $\,f\,$ suivant les valeurs de $\,a\,$.

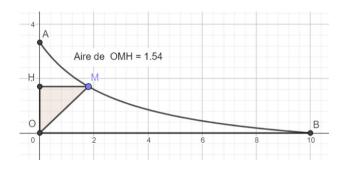
b) Déterminer f

3) a) Déterminer le tableau de variations de f pour a >	3)) a)) Déterminer	le tableau	de variations	de	f	pour	a>
---	----	-------	--------------	------------	---------------	----	---	------	----

(Si vous ne réussissez pas cette question vous pouvez pour la moitié des points de la question faire l'étude pour a=1)

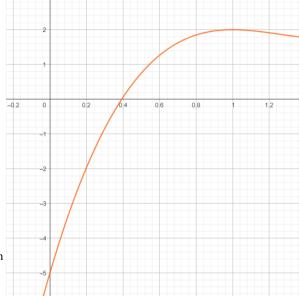
b) Pour quelle valeur de $\ a$, $\ f$ admet-elle un maximum en -1 .

4) Déterminer le tableau de variations de f pour $a < -\frac{1}{4}$.


(Si vous ne réussissez pas cette question vous pouvez pour la moitié des points de la question faire l'étude pour a=-1)

Le point $\mathbf{M}(x;y)$ se déplace sur la courbe entre \mathbf{A} et \mathbf{B} . Le but du problème est de déterminer l'abscisse du point \mathbf{M} pour que l'aire du triangle rectangle OHM soit maximale.

1) Déterminer f(x) , l'aire du triangle en fonction de x .


2) Calculer f'(x).

3) Déterminer le tableau de variation de $\ f$, puis répondre au problème posé.

Ex 4 :1) On considère la fonction f définie par $f(x)=4x^3-15x^2+18x-5$. a) Etudier les variations de la fonctions f .

Nous allons maintenant essayer de trouver une valeur approchée de α , l'unique solution appartenant à l'intervalle [0:1].

- 2) On a représenté ci-contre $\,{\sf C}_f\,$ la courbe représentative de $\,f\,$.
- a) Tracer la tangente $~{\rm T_{x_0}}~$ à $~{\rm C_{\it f}}~$ au point d'abscisse $~x_0$ =0 .
- T_{x_0} coupe l'axe des abscisses en un unique point A.
- b) Déterminer la valeur exacte de l'abscisse x_1 de A .

c) Tracer la tangente T_{x_1} à C_f au point d'abscisse x_1 . T_{x_1} coupe l'axe des abscisses en un unique point B d'abscisse x_2 . Que dire de x_2 ?

3) Mise en place de l'algorithme : (cas général)

Soit f une fonction telle que f(x)=0 admette une unique solution α sur un intervalle où elle est définie. On note C_f sa courbe représentative . Soit x_0 un réel bien choisi afin que l'algorithme converge bien vers α .

- a) Déterminer l'équation de la tangente T_{x_n} à C_f au point d'abscisse x_0 .
- b) Démontrer que l'abscisse x_1 du point d'intersection A_1 de T_{x_0} avec l'axe des abscisses vaut $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$. On peut alors répéter ce procédé en remplaçant x_0 par la nouvelle abscisse x_1 , et ainsi obtenir des réels x_1 , x_2 , x_3 ... de plus en plus proche de α .

c) On s'intéresse à nouveau à la fonction f définie par $f(x)=4x^3-15x^2+18x-5$. Compléter les pointillés dans le programme suivant écrit en Python pour que la fonction newton retourne un réel x tel que $|f(x)|<10^{-4}$. On choisit x=0 comme valeur de départ.

```
1
     def f(a,b,c,d,x):
2
       return a*x**3+b*x**2+c*x+d
3
     def der_f(a,b,c,x):
4
       return .....
5
     def newton(a,b,c,d,x,p):
       while abs(f(a,b,c,d,x))>\dots:
6
          x=x-f(a,b,c,d,x)/....
8
       return(x)
9
     print(newton(..., ..., ..., ..., ...))
```

d) Modifier uniquement la ligne 9 pour résoudre l'équation f(x)=1

Correction:

<u>Ex 1:</u>

1)
$$f'(0,2)=1,6$$
 $f'(1)=0$ $f'(1,3)=-0,6$ $f'(3)$ impossible

2)
$$y=f'(1,3)(x-1,3)+f(1,3) \Leftrightarrow y=-0,6(x-1,3)+3,9 \Leftrightarrow y=-0,6x+0,78+3,9 \Leftrightarrow y=-0,6x+4,68$$

3)
$$f'(x)=0 \Leftrightarrow x=1$$

4)
$$f'(x)>0 \Leftrightarrow x \in [0;1[\cup]3;4]$$

Ex 2:

1) Si
$$a>0$$
, $x^2+a>0$, donc $D_f=\mathbb{R}$

Si
$$a=0$$
, $D_f = \mathbb{R}^*$

Si
$$a < 0$$
, $D_f = \mathbb{R} - \{-\sqrt{-a}; \sqrt{-a}\}$

2)
$$f$$
 est dérivable sur \mathbb{R} (fonction rationnelle) et $f'(x) = \frac{-2(x^2+a)-2x(1-2x)}{(x^2+a)^2} = \frac{2(x^2-x-a)}{(x^2+a)^2}$

3)a)
$$f'(x)$$
 est du signe de x^2-x-a . On a $\Delta = 1+4a$, $x_1 = \frac{1-\sqrt{1+4a}}{2}$ et $x_2 = \frac{1+\sqrt{1+4a}}{2}$

- ∞	$\frac{1-\sqrt{1+4a}}{2}$		$\frac{1+\sqrt{1+4a}}{2}$		+ ∞	
+	0	-	0	+		
$f\left(\frac{1-\sqrt{1+4a}}{2}\right)$						
/		\	$f\left(\frac{1+\sqrt{1+4a}}{2}\right)$)/		
		$ \begin{array}{cccc} & & & & \\ & & & \\ & & + & & \\ & & & \\ & & & f\left(\frac{1-\sqrt{1+4a}}{2}\right) \end{array} $	$ \begin{array}{cccc} & & & & \\ \hline & & & \\ & & + & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$ \begin{array}{c ccccc} & & & & & & & \\ \hline & & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

b)
$$\frac{1-\sqrt{1+4a}}{2}$$
 =-1 \Leftrightarrow $1-\sqrt{1+4a}$ =-2 \Leftrightarrow $\sqrt{1+4a}$ =3 \Leftrightarrow $1+4a$ =9 \Leftrightarrow a =2

4) Si
$$a<-\frac{1}{4}$$
 , $\Delta<0$ et $f'(x)$ est donc toujours strictement positif.

x	- ∞ -√	$\overline{-a}$	$\sqrt{-a}$	+ ∞
f'(x)	+	+		+
f				

1)
$$f(x) = \frac{OH \times HM}{2} = \frac{f(x) \times x}{2} = \frac{10x - x^2}{2x + 6}$$

2) On trouve....
$$f'(x) = \frac{-x^2 - 6x + 30}{2(x+3)^2}$$

1)
$$f(x) = \frac{OH \times HM}{2} = \frac{f(x) \times x}{2} = \frac{10x - x^2}{2x + 6}$$

2) On trouve.... $f'(x) = \frac{-x^2 - 6x + 30}{2(x + 3)^2}$
3) $f'(x)$ est du signe de $-x^2 - 6x + 30$... on trouve $x_1 = -3 - \sqrt{39} \approx -9,24$ et $x_2 = -3 + \sqrt{39} \approx 3,24$

x	0	$-3+\sqrt{39}$	10
f'(x)	+	0 -	
f			•

Ex 4:

1) a) f est une fonction polynôme, elle est donc dérivable sur $\mathbb R$.

Pour pour tout $x \in \mathbb{R}$, on a : $f'(x) = 12x^2 - 30x + 18 = 2(6x^2 - 15x + 9)$ $x_1 = 1$ est une racine évidente, l'autre raine est $x_2 = \frac{9}{6} = \frac{3}{2}$

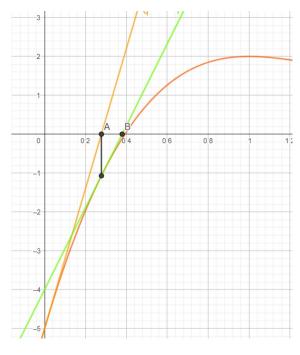
X	- ∞		1		3 2		+ ∞
f'(x)		+	0	-	0	+	
f			▼ 2 \		1,75		*

b) On a f(0)=-5 et f(1)=2 . On en déduit que l'équation possède au plus une solution . (En fait exactement une comme vous le verrez en terminale)

 T_{x_0} a pour équation : $y=f'(0)x+f(0) \Leftrightarrow y=18x-5$

On a
$$0 = 18x_1 - 5 \Leftrightarrow x_1 = \frac{5}{18}$$

3) a) $\, {\rm T}_{x_0} \,$ admet pour équation : $y \! = \! f$ ' $\! (x_0)(x \! - \! x_0) \! + \! f(x_0)$


b) On note $\ x_1\$ l'abscisse du point d'intersection avec l'axe des abscisses. On a :

$$\begin{array}{lll} 0 \! = \! f \, {}^{\prime}(x_0)(x_1 \! - \! x_0) \! + \! f(x_0) & \Leftrightarrow & f \, {}^{\prime}(x_0)x_1 \! - \! x_0 f \, {}^{\prime}(x_0) \! + \! f(x_0) \! = \! 0 \\ & \Leftrightarrow & x_1 \! = \! x_0 \! - \! \frac{f(x_0)}{f'(x_0)} \end{array}$$

c)

d)
$$f(x)=1 \Leftrightarrow f(x)-1=0 \Leftrightarrow 4x^3-15x^2+18x-6=0$$

Donc: print(newton(4,-15,18,-6,0,4))

