- Durée 1h30

- Calculatrices de lycée interdites

Barème :
1)3 pts 2)4 pts 3)5 pts
4) 5 pts 5) 5 pts

Nom:

 $\frac{1)_{3} \text{ pts } 2)_{4} \text{ pts } 3)_{5} \text{ pts}$

Ex 1 : Dans la liste ci-dessous, entourer les trinômes du second degré :

$$P_1(x) = 2x^2 - \frac{5}{4x} + 1$$

$$P_2(x) = (2x-2)^2 - (2x-5)^2$$

$$P_3(x) = (2x+5)\left(2-\frac{x}{2}\right)$$

$$P_4(x) = 2(x-3)^2 + 1$$

$$P_5(x) = \frac{(x^4+1)(x^2-1)}{x^4+1}$$

$$P_6(x) = \frac{(x^2 + x + 1)(x^2 - 2)}{x^2 - 2}$$

Ex 2:1) Ecrire le trinôme $Q(x)=2x^2+5x+1$ sous forme canonique:

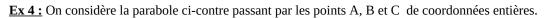
2) En déduire les coordonnées du sommet S de la parabole représentant Q.

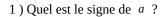
Ex 3 : Résoudre dans \mathbb{R} les équations suivantes :

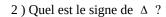
1)
$$\frac{x-4}{x+1} = \frac{x-3}{2x-2}$$
 (E₁)

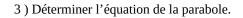
$$2$$
 $4 x^8 + 4 x^2 + 3 = 0$ (E_2)

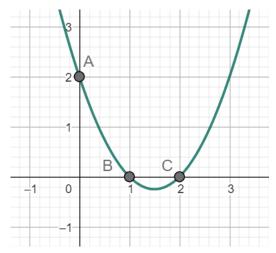
3)
$$(x-1)^2 = i$$
 où i est un réel strictement positif.











Ex 5 : Soit *f* la fonction définie sur \mathbb{R} par $f(x)=x^4-2x^2-1$.

1) a) Pourquoi le nombre de points d'intersection entre C_f et l'axe des abscisses est forcément pair ?

b) Déterminer les coordonnées des points d'intersection entre $^{\mathrm{C}_{\!f}}$ et l'axe des abscisses.	
2) Déterminer le nombre de points d'intersection entre $^{\rm C}_{\!f}$ et la droite d'équation $y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $^{\rm C}_{\it f}$ et la droite d'équation $y\!=\!-1$.	
2) Déterminer le nombre de points d'intersection entre $^{\rm C}_{\it f}$ et la droite d'équation $y\!=\!-1$.	
2) Déterminer le nombre de points d'intersection entre $^{\rm C}_{\it f}$ et la droite d'équation $y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $^{\rm C}_{\it f}$ et la droite d'équation $y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $\ ^{\mathbb{C}_f}$ et la droite d'équation $\ y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $\ ^{\ }C_{f}$ et la droite d'équation $\ y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $\ ^{\rm C}_{\it f}\ $ et la droite d'équation $\ \it y=-1$.	
2) Déterminer le nombre de points d'intersection entre $\ {\rm C}_{\rm f}\ $ et la droite d'équation $\ y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $\ ^{C_f}$ et la droite d'équation $\ y{=}{-}1$.	
2) Déterminer le nombre de points d'intersection entre $\ C_f$ et la droite d'équation $\ y{=}{-}1$.	

Correction:

Ex 1:

$$P_1(x) = 2x^2 - \frac{5}{4x} + 1$$

$$P_2(x) = (2x-2)^2 - (2x-5)^2$$

$$P_{3}(x) = (2x+5)\left(2 - \frac{x}{2}\right)$$

$$P_{6}(x) = \frac{(x^{2}+x+1)(x^{2}-2)}{x^{2}-2}$$

$$P_4(x) = 2(x-3)^2 + 1$$

$$P_{1}(x)=2 x^{2}-\frac{5}{4 x}+1 \qquad P_{2}(x)=(2 x-2)^{2}-(2 x-5)^{2}$$

$$P_{4}(x)=2 (x-3)^{2}+1 \qquad P_{5}(x)=\frac{(x^{4}+1)(x^{2}-1)}{x^{4}+1}$$

$$\underline{\mathbf{Ex 2:1}}) \quad \mathbf{Q}(x) = 2x^2 + 5x + 1 = 2\left(x^2 + \frac{5}{2}x + \frac{1}{2}\right) = 2\left(\left(x + \frac{5}{4}\right)^2 - \frac{25}{16} + \frac{1}{2}\right) = 2\left(\left(x + \frac{5}{4}\right)^2 - \frac{17}{16}\right) = 2\left(x + \frac{5}{4}\right)^2 - \frac{17}{8}$$

2)
$$S\left(-\frac{5}{4}; -\frac{17}{8}\right)$$

Ex 3:

1) Pour tout $x \neq -1$ et $x \neq 1$, on a:

$$\frac{x-4}{x+1} = \frac{x-3}{2x-2} \Leftrightarrow (x-4)(2x-2) = (x-3)(x+1)$$

$$\Leftrightarrow 2x^2 - 2x - 8x + 8 = x^2 + x - 3x - 3$$

$$\Leftrightarrow x^2 - 8x + 11 = 0 \quad (E'_1)$$

$$\Delta = 20 \ x_1 = \frac{8 + \sqrt{20}}{2} = 4 + \sqrt{5} \ \text{et} \ x_2 = 4 - \sqrt{5}$$

 x_1 e x_2 sont différentes des 1 et de -1.

Ainsi
$$S = \{4 - \sqrt{5}; 4 + \sqrt{5}\}$$

2)
$$4x^8+4x^2+3=0$$
 (E₂)

On obtient $4x^8+4x^2=-3$

Ce qui est impossible étant donné que $4x^8+4x^2 \ge 0$

3)
$$(x-1)^2 = i \Leftrightarrow x-1 = \sqrt{i} \text{ ou } x-1 = -\sqrt{i}$$

 $\Leftrightarrow x=1+\sqrt{i} \text{ ou } x=1-\sqrt{i}$

PAS DE COMPLEXE ICI!

Ex 4: Fiche d'exercices

1) a>0 2) $\Delta>0$

3)On a P(1)=0 et P(2)=0, donc le trinôme admet une forme factorisée du type :

P(x) = a(x-1)(x-2)

De plus P(0)=2

 \Rightarrow 2= $a\times(-1)\times(-2)$

 $\Rightarrow a=1$

On obtient donc P(x)=(x-1)(x-2)

Ex 5:

1) a) Car la fonction est paire et $f(0)\neq 0$.

La courbe est donc symétrique par rapport à l'axe des ordonnées et ne passe pas par l'origine du repère.

b) Nous devons résoudre : $x^4-2x^2-1=0$ (E)

On pose $X = x^2$

On est amené à résoudre $X^2-2X-1=0$ (E')

$$\Delta = 8 \text{ et } X_1 = \frac{2 - 2\sqrt{2}}{2} = 1 - \sqrt{2} \text{ et } X_2 = \frac{2 + 2\sqrt{2}}{2} = 1 + \sqrt{2}$$

L'équation $x^2 = 1 - \sqrt{2}$ n'a pas de solutions car $1 - \sqrt{2} < 0$.

Les solution de (E) sont donc les solutions de l'équation :

$$x^2 = 1 + \sqrt{2} \iff x = \sqrt{1 + \sqrt{2}} \text{ ou } x = -\sqrt{1 + \sqrt{2}}$$
.

 C_f coupe donc l'axe des abscisses en deux points, de coordonnées $(\sqrt{1+\sqrt{2}},0)$ et $(-\sqrt{1+\sqrt{2}},0)$

2) Nous devons résoudre : $x^4-2x^2-1=-1$ (E)

$$x^4 - 2x^2 - 1 = -1 \Leftrightarrow x^4 - 2x^2 = 0 \Leftrightarrow x^2(x^2 - 2) = 0 \Leftrightarrow x^2 = 0 \text{ ou } x^2 = 2 \Leftrightarrow x = 0 \text{ ou } x = \sqrt{2} \text{ ou } x = -\sqrt{2}$$

Il y a donc trois points d'intersection.