Cadeau de fin d'année

- Durée 1h

- Calculatrices autorisées

Barème :	Nom:
1) 5 pts 2) 4 pts	
3)4 pts 4)7 pts	

Commentaires: Lisez l'énoncé en entier avant de commencer et répondez bien aux questions qui vous sont demandées. Soyez propre et clair. Bon courage ...

Ex 1: On suppose que le temps d'attente à un arrêt de bus (en min) , suit la loi uniforme sur [0;40] . On note X la variable aléatoire correspondant au temps d'attente. 1) Déterminer la probabilité que la durée d'attente d'une personne prise au hasard soit comprise entre 10 et 15 min.
2) Déterminer la probabilité que la durée d'attente d'une personne prise au hasard soit inférieure à 5 min.
3) Quel est le temps moyen d'attente à cet arrêt de bus ?
4) Sachant qu'une personne attend le bus depuis 15 min, quelle est la probabilité qu'elle attende au moins encore 5 minutes ?
Ex 2 : La durée de vie (en jours) d'un composant électronique est une variable aléatoire X qui suit la loi exponentielle de paramètre 0,001. 1) On prélève un composant au hasard. Calculer la probabilité que le composant ait une durée de vie : a) comprise entre 200 et 300 jours,
b) inférieure à 400 jours,
c) supérieure à 500 jours.
2) Quelle est la durée de vie moyenne de ces composants électroniques ?
Ex 3: La durée de vie d'un écran LCD, exprimée en années, est une variable aléatoire suivant la loi exponentielle de paramètre λ . On admet qu'en moyenne, un écran a une durée de vie de 9 ans. 1) Déterminer la valeur de λ .

2) Déterminer la probabilité qu'un écran ait une durée de vie supérieure à 9 ans.

3) Si un tel écran fonctionne depuis 2 ans, quelle est la probabilité pour qu'il ait une durée de vie totale supérieure à 11 ans ?

Ex 4: Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} -3x^2 + 3x + \frac{1}{2} & \text{si } x \in [0;1] \\ 0 & \text{si } x \notin [0;1] \end{cases}$ 1) Montrer que f est une fonction densité d'une variable aléatoire X.

3) En déduire $P(0,1 \le X \le 0,2)$

Correction:

Ex 1:

1)
$$P(10 \le X \le 15) = \frac{15 - 10}{40} = \frac{5}{40} = \frac{1}{8}$$

2)
$$P(X \le 5) = \frac{5}{40} = \frac{1}{8}$$

3) $E(X) = \frac{0+40}{2} = 20$. Le temps moyen d'attente à cet arrêt de bus est de 20 min.

$$P_{X \geqslant 15}(X \geqslant 20) = \frac{P((X \geqslant 20) \cap (X \geqslant 15))}{P(X \geqslant 15)} = \frac{P(X \geqslant 20)}{P(X \geqslant 15)} = \frac{40 - 20}{40 - 15} = \frac{20}{25} = \frac{4}{5}$$

Ex 2:

1) a)
$$P(200 \leqslant X \leqslant 300) = e^{-0.001 \times 200} - e^{-0.001 \times 300} \approx 0.08$$
 b) $P(X \leqslant 400) = 1 - e^{-0.001 \times 400} \approx 0.33$ c) $P(X \geqslant 500) = e^{-0.001 \times 500} \approx 0.61$

b)
$$P(X \le 400) = 1 - e^{-0.001 \times 400} \approx 0.33$$

c)
$$P(X \ge 500) = e^{-0.001 \times 500} \approx 0.61$$

2)
$$E(X) = \frac{1}{0,001} = 1000$$

Ces composants électroniques ont une durée de vie moyenne de 1000 jours.

Ex 3:

1)
$$E(X)=8 \Leftrightarrow \frac{1}{\lambda}=9 \Leftrightarrow \lambda=\frac{1}{9}$$

2)
$$P(X>9)=e^{-9\times\frac{1}{9}}=e^{-1}$$

3) Il s'agit ici du phénomène de mort sans vieillissement modélisé par la loi exponentielle.

On a donc directement:

$$P_{X>2}(X>11)=P_{X>2}(X>2+9)=P(X>9)=e^{-1}$$

Ex 4:

1)
$$\Delta = 3^2 + 4 \times 3 \times \frac{1}{2} = 9 + 6 = 15$$

On trouve
$$x_1 = \frac{3 - \sqrt{15}}{6} \approx -0.145 \text{ et } x_2 = \frac{3 + \sqrt{15}}{6} \approx 1.145$$

Le trinôme étant du signe de -3 sauf entre les racines, on en déduit que f est bien positive entre 0 et 1.

La fonction est continue sur [0;1] et nulle en dehors de [0;1]

$$\int_0^1 -3x^2 + 3x + \frac{1}{2} dx = \left[-x^3 + \frac{3x^2}{2} + \frac{x}{2} \right]_0^1 = -1 + \frac{3}{2} + \frac{1}{2} = 1$$

2)

- si
$$t < 0$$
, on a $F(t) = 0$

- si
$$t > 1$$
, $F(t) = 1$

- si
$$t \in [0;1]$$

$$F(t) = P(X \le t) = \int_0^t -3x^2 + 3x + \frac{1}{2} dx = \left[-x^3 + \frac{3x^2}{2} + \frac{x}{2} \right]_0^t = -t^3 + \frac{3t^2}{2} + \frac{t}{2}$$

3)
$$P(0,1 \le X \le 0,2) = F(0,2) - F(0,1) = \frac{11}{125} = 0,088$$