Tcomp Devoir surveillé n ° 1

- Durée 1h
- Calculatrices de lycée autorisées

Barème :	Nom:
1) 5 pts 2) 5 pts 3) 10 pts	

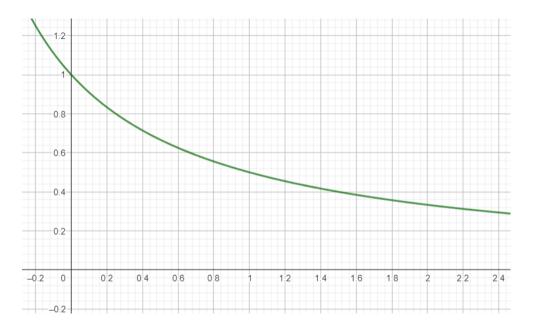
Ex 1: Pour chacune des suites ci-dessous, cocher les bonnes réponses.

La suite (u_n) est:	géométrique	arithmétique	croissante	décroissante	Non monotone
1) $u_n = 2n + 3$					
2) $\begin{cases} u_0 = 2 \\ u_{n+1} = 3 u_n \end{cases}$ 3) $u_n = (-1)^n$					
3) $u_n = (-1)^n$					
$4) u_n = n^2$					
$ \begin{cases} u_0 = 2 \\ u_{n+1} = u_n - 2 \end{cases} $					

Ex 2 : On considère la suite (u_n) définie par $u_0=2$ et $u_{n+1}=\frac{1}{u_n+0.5}$.

On a représenté ci-dessous la courbe de la fonction f définie par $f(x) = \frac{1}{1+x}$.

Représenter les quatre premiers termes de la suite sur les axes, puis conjecturer le comportement de la suite (variations et limites éventuelles).



Ex 3: Étudier dans chaque cas la convergence de la suite (u_n) .

1)
$$u_n = \frac{-n^5}{5} + \frac{n^2}{4} - e$$

2)
$$u_n = \frac{n^2 - 3n + 1}{2n^2 + 4}$$

$$3) u_n = \frac{5\cos(n)}{n^2}$$

4)
$$u_n = 5(-1)^n + n^2$$

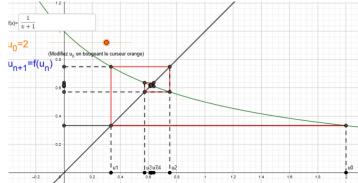
5)
$$u_n = \left(-\frac{8}{9}\right)^n + \left(\frac{17}{18}\right)^n$$

Correction:

Ex 1:

La suite (u_n) est:	géométrique	arithmétique	croissante	décroissante	Non monotone
1) $u_n = 2n + 3$		X	X		
$ \begin{array}{c} 2) \begin{cases} u_0 = 2 \\ u_{n+1} = 3 u_n \end{array} \\ 3) u_n = (-1)^n $	X		X		
3) $u_n = (-1)^n$	X				X
$4) u_n = n^2$			X		
$5) \begin{cases} u_0 = 2 \\ u_{n+1} = u_n - 2 \end{cases}$		X		X	

Ex 2: fiche exercice



La suite semble tendre vers l'abscisse du point d'intersection de la courbe représentant la fonction f définie par $f(x) = \frac{1}{x+0.5}$ et la droite d'équation y=x.

Ex 3:

$$\frac{\text{Div } 5.}{1) \quad \forall n \in \mathbb{N}^*, \quad u_n = n^5 \left(\frac{-1}{5} + \frac{1}{4n^3} - \frac{e}{n^5}\right) \\
\lim_{n \to +\infty} \quad n^5 = +\infty \quad \text{et} \quad \lim_{n \to +\infty} \left(\frac{-1}{5} + \frac{1}{4n^3} - \frac{e}{n^5}\right) = \frac{-1}{5} \quad \text{(par somme)}$$
Par produit,
$$\lim_{n \to +\infty} \quad u_n = -\infty$$

2)
$$\forall n \in \mathbb{N}^*$$
, $u_n = \frac{n^2 - 3n + 1}{2n^2 + 4} = \frac{n^2 \left(1 - \frac{3}{n} + \frac{1}{n^2}\right)}{n^2 \left(2 + \frac{4}{n^2}\right)} = \frac{1 - \frac{3}{n} + \frac{1}{n^2}}{2 + \frac{4}{n^2}}$

On a
$$\lim_{n \to +\infty} 1 - \frac{3}{n} + \frac{1}{n^2} = 1$$
 et $\lim_{n \to +\infty} 2 + \frac{4}{n^2} = 2$

Donc par quotient $\lim_{n \to +\infty} u_n = \frac{1}{2}$

3)
$$\forall n \in \mathbb{N}^*$$
, $-1 \leq \cos(n) \leq 1 \Rightarrow -5 \leq 5 \cos(n) \leq 5 \Rightarrow -\frac{5}{n^2} \leq u_n \leq \frac{5}{n^2}$

Or
$$\lim_{n \to +\infty} -\frac{5}{n^2} = \lim_{n \to +\infty} \frac{5}{n^2} = 0$$

Donc, d'après le théorème des gendarmes, $\lim_{n \to +\infty} u_n = 0$

4)
$$\forall n \in \mathbb{N}, -1 \le (-1)^n \Rightarrow -5 \le 5(-1)^n \Rightarrow -5 + n^2 \le 5(-1)^n + n^2$$

On a $\lim_{n \to +\infty} -5 + n^2 = +\infty$

Donc d'après les théorèmes de comparaison en l'infini, on a $\lim_{n \to +\infty} u_n = +\infty$

5) (u_n) est la somme de deux suites géométriques de raisons comprises entre -1 et 1 et qui tendent donc vers 0. Par somme $\lim_{n \to +\infty} u_n = 0$