<u>Texp</u> <u>Devoir n ° 1</u>

- Durée 1 h
- Calculatrices autorisées

Barème: 1)4 pts 2)4 pts 3)4 pts 4)4 pts 5)4 pts	Nom:

Ex 1: 1) Déterminer une combinaison linéaire de 3n+3 et 7n+2 donnant un résultat constant.

2) En déduire les entiers relatifs n tels que 3n+3 divise 7n+2.

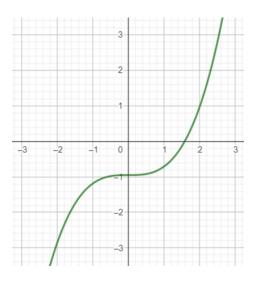
Ex 2 : 1) Montrer par l'absurde que l'équation	$12753 x^2 - 45711 y^4 = 8921$	n'admet aucune solution dans	\mathbb{Z}^2 .
2) a) Trouver un couple d'entiers tel que 45.	x - 66y = 3		
b) En déduire un couple d'entiers tel que 15 x	x - 22 y = 327		

<u>Ex 3:</u>

Soit C_f la courbe représentative de la fonction f définie par $f(x) = \frac{5}{21}x^3 - \frac{20}{21}$

Le but du problème est de savoir s'il existe un point de coordonnées entières appartenant à $\, {\rm C}_{\! f} \,$.

1) Montrer que si un point A(x;y) où $(x,y) \in \mathbb{Z}^2$ appartient à C_f , alors on peut trouver $a \in [0,1,2,...,6]$ et $b \in [0,1,2,...,6]$ tels que $ax^3 \equiv b[7]$.



2) Conclure.

Ex 4 : Déterminer le reste de la division euclidienne de 38346863³³⁸ par 7.

Ex 5: Résoudre dans \mathbb{Z} , l'équation 6x = 5[13]

correction:

Ex 1: 1)
$$7 \times (3n+3) - 3 \times (7n+2) = 15$$

2) Si 3n+3 divise 7n+2 alors 3n+3 divise toute combinaison linéaire de 3n+3 et de 7n+2. En particulier 3n+3 divise $7\times(3n+3)-3\times(7n+2)=15$

Les diviseurs de 15 sont -1, 1, -3, 3, -5, 5, -15 et 15

Ainsi 3n+3=-1 ou 3n+3=1 ou 3n+3=-3 ou 3n+3=3 ou 3n+3=-5 ou 3n+3=5 ou 3n+3=-15 ou 3n+3=-15

On en déduit que : $n = -\frac{4}{3}$ ou $n = -\frac{2}{3}$ ou n = -2 ou n = 0 ou $n = -\frac{8}{3}$ ou $n = \frac{2}{3}$ ou n = -6 ou n = 4

 $n=-\frac{4}{3}$, $n=-\frac{2}{3}$, $n=-\frac{8}{3}$ et $n=\frac{2}{3}$ ne sont pas des entiers, nous pouvons donc les exclure.

Réciproquement:

si
$$n=-2$$
 alors $3n+3=-3$ et $7n+2=-12$: OUI

si
$$n=0$$
 alors $3n+3=3$ et $7n+2=2$: NON

si
$$n=-6$$
 alors $3n+3=-15$ et $7n+2=-40$: NON

si
$$n=4$$
 alors $3n+3=15$ et $7n+2=30$: OUI

3n+3 divise 7n+2 uniquement pour n=-2 et n=4

Ex 2:

- 1) Supposons qu'il existe un couple d'entiers relatifs tel que $12753 x^2 45711 y^4 = 8921$.
- 3 divisant 12753 et 45711, il divise donc aussi $12753 x^2 45711 y^4$. Il devrait donc diviser 8921, ce qui est absurde.

L'équation n'a donc pas de solution dans \mathbb{Z}^2 .

2) a)
$$45x-66y=3 \Leftrightarrow 3(15x-22y)=3 \Leftrightarrow 15x-22y=1$$

 $15\times3-22\times2=45-44=1$ donc (3,2) répond au problème.

b) $(3\times327, 2\times327)$, c'est à dire (981,654)

Ex 3:

1) Si un point
$$A(x; y)$$
 où $(x,y) \in \mathbb{Z}^2$ appartient à C_f , alors ses coordonnées vérifient :

$$y = \frac{5}{21}x^3 - \frac{20}{21} \Leftrightarrow 21 \ y = 5 \ x^3 - 20 \Leftrightarrow 5x^3 - 21 \ y = 20$$

On a:
$$21 \equiv 0[7]$$
 et $20 \equiv 6[7]$

Ainsi
$$5x^3 - 21y = 20 \implies 5x^3 \equiv 6[7]$$

2)

<i>x</i> [7]	-3	-2	-1	0	1	2	3
$x^{3}[7]$	1	-1	-1	0	1	1	-1
$5x^{3}[7]$	5	2	2	0	5	5	2

Cette étude exhaustive nous permet de conclure :

On constate que $5x^3$ n'est jamais congru à 6 modulo 7, et il n'existe pas de points de coordonnées entières appartenant à C_f .

$$38346863 \equiv 2[7]$$
, donc $38346863^{338} \equiv 2^{338}[7]$

Par ailleurs
$$2^3 \equiv 1[7]$$
 et $338 = 112 \times 3 + 2$

Ainsi
$$2^{338} = 2^{3 \times 112 + 2} = (2^3)^{112} \times 2^2 = (2^3)^{112} \times 4$$

Or
$$2^3 \equiv 1[7]$$
, donc $(2^3)^{112} \equiv 1[7]$

Ainsi
$$38346863^{338} \equiv 4[7]$$

Comme $0 \le 4 < 7$, 4 est le reste de la division euclidienne de 38346863^{338} par 7.

<u>Ex 5:</u>

$$6x \equiv 5[13] \Rightarrow 11 \times 6x \equiv 11 \times 5[13] \Rightarrow 66x \equiv 55[13]$$

Or $66 \equiv 1[13] \Rightarrow 66x \equiv x[13]$ et $55 \equiv 3[13]$
Donc $6x \equiv 5[13] \Rightarrow x \equiv 3[13]$

<u>Réciproque</u>:

$$x \equiv 3[13] \Rightarrow 6x \equiv 18[13] \Rightarrow 6x \equiv 5[13]$$

On a donc:
$$6x \equiv 5[13] \Leftrightarrow x \equiv 3[13]$$

Les solutions sont donc les entiers de la forme x=3+13k (où $k\in\mathbb{Z}$)