
Devoir 4     correction :  

: 

Exercice 1     :  
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La suite (un )  est donc décroissante
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Ainsi (vn )  est arithmétique de raison 
1

4
 et de premier terme v0=

1

u0−1
=

1

2−1
=1

Et vn=1+ 1
4
n= n+4

4
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b ) 
def somme(n) :
     v=1
     s=v
     for i in range(1,n+1) :
         v=(i+4)/4
         s=s+v
     return s

Exercice 2     :  
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2 ) Pour tout n∈ℕ , on a : 
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Ainsi (vn)  est géométrique de raison 
1
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 et de premier terme v0=u0+3=−1+3=2
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b ) Pour tout n∈ℕ , on a :  un=vn−3= 2
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4 ) (vn) est une suite géométrique de raison −1< 1
3

<1  , donc (vn)  tend vers 0.

On conjecture que (un)  tend vers -3
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Exercice 3     :  

1 ) a ) 
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A2  et A2  forment une partition de l’univers . D’après la formule des probabilités totales, on a :

p3=P (A3)=P (A2∩A3)+P (A2∩A3)=0 ,9×0 ,9+0 ,1×0 , 4=0 ,81+0 ,04=0 ,85

b ) PA3
(A2)=

P (A3∩A2)
P (A3 )

= 0 ,9×0 ,9
0,85

 ≈ O,95

2 ) a)

b ) An  et An  forment une partition de l’univers . D’après la formule des probabilités totales, on a :

pn+1=P (An+1)=P (An∩An+1)+P (An∩An+1)=pn×0 ,9+(1−pn)×0 , 4  =0 ,9 pn+0 , 4−0 , 4 pn=0 ,5 pn+0 , 4

3 ) a )Pour tout n∈ℕ* , on a : 

pn+1−pn=0,5 pn+0,4−pn=−0,5 pn+0,4

Or on a admis que pn>0 ,8  ⇒  −0,5 pn<−0,5×0,8  ⇒   −0,5 pn<−0,4  ⇒  −0,5 pn+0,4<0 ⇒  pn+1−pn<0
Ainsi ( pn)  est décroissante.

b )  Pour tout n∈ℕ* , on a : 

vn+1=pn+1−0,8=0,5 pn+0,4−0,8=0,5 pn−0,4=0,5 (un−0,8 )=0,5 vn

                 
                                     0,6
                       

      1−Pn              0,4

                                    0,1
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Ainsi (vn)  est géométrique de raison 0 ,5  et de premier terme v1=p1−0 ,8=1−0 ,8=0 ,2

c ) Pour tout n∈ℕ* , on a : vn=0,2×(0,5 )n−1
 et  pn=vn+0 ,8 = 0,2×(0,5 )n−1 +0,8

d ) (vn) est une suite géométrique de raison −1<0,5<1  , donc (vn)  tend vers 0.
On conjecture que ( pn)  tend vers 0,8

La probabilité qu’un client achète un melon la nième semaine pour n  suffisamment grand se rapproche de 0,8

Question automatisme     :  

Réponse b

{2 x−4 y=5 (L1)
3 x+5 y=−4 (L2)

⇔ {2 x−4 y=5 (L1)
−22 y=23(L2←3L1−2L2)

                                ⇔ {2 x=5+4 y
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