Ex 6-1: Vrai ou faux : restituer les notions du cours

- 1) Si une fonction f est décroissante sur $\mathbb R$, alors f est dérivable sur $\mathbb R$ et sa dérivée est négative.
- 2) Si f est une fonction dont la dérivée est nulle, alors f est constante.
- 3) Si f est une fonction dérivable en a telle que f'(a)=0 , alors f admet un maximum local en a .
- 4) Une fonction f admet un maximum local en 3 sur [1;4] s'il existe un intervalle ouvert]a;b[inclus dans [1;4] et contenant 3 tel que pour tout x appartenant à]a;b[, on a $f(x) \le f(3)$.
- 5) Si une fonction $\ f$ admet un maximum local en $\ a$, alors $\ f$ est dérivable en $\ a$.

Ex 6-2: Déterminer les variations d'une fonction

Dans chacun des cas ci-dessous, étudier les variations de $\,f\,$ sur I, puis déterminer les éventuels extrema de $\,f\,$.

1)
$$f: x \mapsto x^5 - 1$$
, $I = \mathbb{R}^+$

4)
$$f:x \mapsto \frac{x-1}{2-x}$$
, $I=\mathbb{R}-[2]$

3) $f:x \mapsto x + \frac{3}{x}$, I = [1;4]

2)
$$f:x \mapsto \sqrt{2x+1}$$
, $I=\left[-\frac{1}{2};+\infty\right[$

6: APPLICATIONS DE LA DÉRIVATION: exercices - page 2

5)
$$f:x \mapsto \frac{x^2+3x}{x+1}$$
, $I=[0;1]$

7)
$$f: x \mapsto x\sqrt{x} - x$$
, $I = \left[\frac{1}{4}; 6\right]$

6)
$$f: x \mapsto (x^2 + 3)^2$$
, I=R

Ex 6-3: Variations: deux méthodes

Dans chacun des cas ci-dessous, étudier les variations de $\,f\,$ sur I en utilisant la définition d'une fonction croissante/décroissante, puis vérifier le résultat grâce à la dérivée.

1)
$$f:x \mapsto \frac{1}{\sqrt{x}}$$
, $I=[1;3]$

6: APPLICATIONS DE LA DÉRIVATION: exercices - page 3

2)
$$f:x\mapsto \frac{1}{(x-1)^2+2}$$
 , $I=\mathbb{R}^+$

[4)
$$f:x \mapsto \sqrt{x}(x+3)$$
, $I=[3,5]$

3)
$$f:x \mapsto -x^4+1$$
, $I=[1;3]$

5)
$$f:x \mapsto -x^8 - x^2$$
, $I = [-5;5]$

6) $f:x \mapsto |x-1|$, I=[-1;3]

Ex 6-5 : Montrer des inégalités

Démontrer, à l'aide d'une étude de fonction, chacune des inégalités proposées sur l'intervalle I.

1)
$$\frac{1}{1-x} \leqslant x-3$$
, $I=[2;+\infty[$

Aide : faire le tableau de variation sur I de $d:x \mapsto \frac{1}{1-x} - (x-3)$

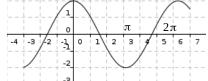
Ex 6-4: À partir d'une courbe

On considère une fonction f dérivable sur I=[-3;7] dont la courbe représentative est donnée ci-dessous.

1) Déterminer les variations de f sur I, ainsi que le signe de sa dérivée.

2) Déterminer tous les extrema

locaux de f.



2) $x^2 \ge x\sqrt{x} - \frac{1}{2}$, I =]0;4]

3) $\frac{\sqrt{x}}{1+x} \le \frac{1}{2}$, I=]0;2]

4) $x + \frac{1}{x} \ge 2$, I= \mathbb{R}_{+}^{*}

Retrouver ce résultat en développant $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$

Ex 6-6: Trouver une fonction vérifiant des conditions

Dans chacun des cas suivants, donner un exemple d'une fonction (ou d'une représentation graphique de fonction) vérifiant la ou les conditions(s) proposée(s) :

1) f est dérivable sur $\mathbb R$, et sa fonction dérivée est négative sur $\mathbb R$.

2) f est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .

3) f est définie et dérivable sur \mathbb{R}^* , et sa dérivée est positive sur \mathbb{R}^* .

4) f est définie sur \mathbb{R}^+ , dérivable uniquement sur \mathbb{R}^*_+ , et sa fonction dérivée est positive sur \mathbb{R}^*_+ .

5) f est dérivable sur \mathbb{R} et admet un maximum local en 4.

6) f est dérivable sur \mathbb{R}^+ , sa fonction dérivée est positive sur \mathbb{R}^+ et s'annule en 0.

Ex 6-7: Encadrement

Soit f la fonction définie sur $\left[-\frac{5}{2};3\right]$ par $f(x)=-\frac{1}{4}x^4+2x^2-3$.

1) Étudier les variations de f (faire un tableau de variation)

2) Déterminer le maximum et le minimum de f(x) sur $\left[-\frac{5}{2};3\right]$ En déduire le meilleur encadrement possible de f(x) sur $\left[-\frac{5}{2};3\right]$

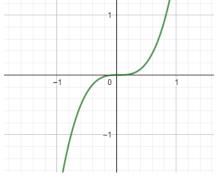
3) Déterminer le meilleur encadrement possible de |f(x)| sur $\left[-\frac{5}{2};3\right]$

Ex 6-8: Attention à la représentation graphique

Zineb a représenté à l'aide de GeoGebra la fonction f définie sur \mathbb{R} par $f(x)=2x^3-0$, $2x^2$.

Elle affirme que la fonction est strictement croissante sur \mathbb{R} .

A-t-elle raison?



Ex 6-9: Trinôme du second degré

1) Démontrer en utilisant la dérivation le résultat déjà vu sur les variations | Soit la fonction f définie sur $[0;+\infty[$ par $f(x)=x^3-2x$ d'un trinôme du second degré $f: x \mapsto ax^2 + bx + c \quad (a \neq 0)$

2) Écrire un algorithme qui, à partir des valeurs connues a, b et c, indique la valeur de l'extremum de la fonction f sur \mathbb{R} en précisant s'il s'agit d'un minimum ou d'un maximum, ainsi que la valeur en laquelle il

python

est atteint . Traduire cet algorithme en Python.

Ex 6-10: Position relative d'une courbe et d'une tangente en un point

1) Calculer f'(x) et en déduire le tableau de variations de f .

2) Déterminer l'équation de la tangente T à la courbe C_f représentative de f au point A d'abscisse 1.

3) Soit *g* la fonction définie sur $[0;+\infty[$ par g(x)=x-2.

a) Montrer que $f(x)-g(x)=(x-1)(x^2+x-2)$

b) Étudier le signe de h(x)=f(x)-g(x).

c) En déduire la position relative de $\ C_f$ par rapport à $\ T$.

Ex 6-11: Position relative de deux courbes

soit f la fonction définie sur \mathbb{R} par $f(x)=x^2+3x+1$ et g la fonction définie sur $\mathbb{R}-[-2]$ par $g(x)=-\frac{1}{x+2}$.

On note $\,C_f\,$ et $\,C_g\,$ les courbes représentatives respectives des fonctions $\,f\,$ et $\,g\,$.

1) Étudier les variations de la fonction f et dresser son tableau de variations.

2) Étudier les variations de la fonction $\ g\$ et dresser son tableau de variations.

- 3) Soit h la fonction définie sur $\mathbb{R}-[-2]$ par h(x)=f(x)-g(x).
- a) Développer $(x+1)^2(x+3)$
- b) Étudier le signe de h(x).

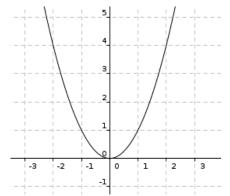
c) Déterminer la position relative de $\ C_f$ par rapport à $\ C_g$.

4) Démontrer que C_f et C_g admettent une tangente commune en un de leurs points d'intersection . Donner une équation de cette tangente.

Ex 6-12 : Étude de fonctions convexes

1) Soit $f:x\longmapsto x^2$ et C_f sa courbe représentative donnée ci-dessous :

Tracer les tangentes à $\, \, C_f \,$ aux points d'abscisses -2, -1, 0, 1 et 2. Quelle semble être la position de chacune de ces tangentes par rapport à $\, \, C_f \,$.



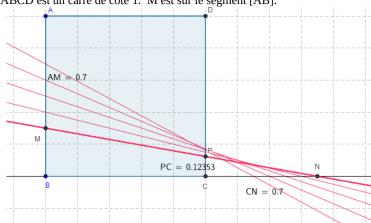
2) Soit $\,a\,$ un réel . Déterminer l'équation $\,y\!=\!g_a(x)\,$ de la tangente à $\,$ C $_f$ au point d'abscisse $\,a\,$.

Démontrer alors que, pour tout réel $\ x$, on a $\ f(x) \geqslant g_a(x)$. Une telle fonction est dite convexe.

Problèmes d'optimisation

Ex 6-13: Distance maximale

ABCD est un carré de côté 1. M est sur le segment [AB].



On place le point N tel que CN=AM sur la demi droite [BC) à l'extérieur du segment [BC].

La droite (MN) coupe (DC) en P . On pose AM = x avec $0 \le x \le 1$.

Le but de l'exercice est de trouver M sur [AB] tel que la distance PC soit maximale.

1) Démontrer que $PC = \frac{x - x^2}{1 + x}$

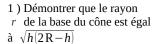
2) a) Étudier les variations de la fonction f définie $\,\,{\rm sur}\, [0;1]$ par $f(x){=}\frac{x{-}x^2}{1{+}x}$

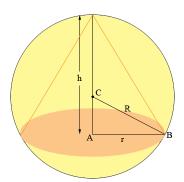
3) La fonction inverse est-elle convexe sur $]-\infty;0[$? Démontrer en revanche qu'elle l'est sur \mathbb{R}_+^* .

b) En déduire la valeur de x pour laquelle la distance PC est maximale.

Ex 6-14: Cône: volume maximal

Dans une sphère de centre C et de rayon R, on inscrit un cône de révolution de hauteur *h*

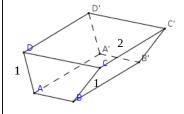


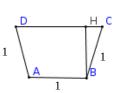


- 2) a) Calculer le volume du cône en fonction de $\,h\,$.
- b) Pour quelle valeur de $\ h$ le volume est-il maximal ?

Ex 6-15: Prisme: volume maximal

Une benne à la forme d'un prisme droit dont la base est un trapèze isocèle ABCD.

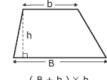




La longueur du côté CD est variable.

Les autres dimensions sont fixes. On désigne par x la longueur CH où H est le projeté orthogonal de B sur (CD). On se propose de déterminer x de façon que la benne ait un volume maximal.

1) Calculer en fonction de $\,x\,$ l'aire $\,S(x)\,$ du trapèze isocèle ABCD, puis le volume $\,V(x)\,$ de la benne.



2) Démontrer que S'(x) peut s'écrire sous la forme $S'(x) = \frac{1-x-2\,x^2}{\sqrt{1-x^2}}$ (utiliser la formule $\sqrt{u'} = \frac{u'}{2\sqrt{u}}$)

3) Étudier le sens de variation de S puis de V.

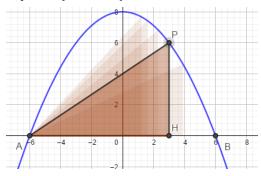
6: APPLICATIONS DE LA DÉRIVATION: exercices - page 11

- 4) Pour quelle valeur de x le volume de la benne est-il maximal ?
- 5) Quel est alors le volume de la benne et quelle est la mesure en degrés de l'angle CBH?

Ex 6-16: Parabole et aire maximale

La parabole d'équation $y = -\frac{2}{9}x^2 + 8$ coupe l'axe des abscisses en A et B.

Le point P(x; y) se déplace sur la parabole entre A et B.



Le but du problème est de déterminer les coordonnées du point P pour que l'aire du triangle rectangle AHP soit maximale.

- 1) Déterminer les coordonnées des points A et B.
- 2) On note f(x), l'aire du triangle en fonction de x.
- a) Déterminer l'ensemble de définition de $\,f\,$.
- b) Montrer que $f(x) = -\frac{1}{9}x^3 \frac{2}{3}x^2 + 4x + 24$
- 3) Étudier les variations de f .

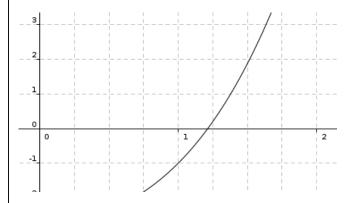
4) Répondre au problème posé.

Algorithme - Python

Ex 6-17: Méthode de Newton-Raphson

1) Introduction:

Dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, on considère la fonction fdéfinie par $f(x)=x^3+x-3$ et sa courbe représentative C_f représentée ci-dessous.



On constate que C_f coupe l'axe des abscisses en un unique point d'abscisse α dont nous allons déterminer une valeur approchée.

- a) Tracer la tangente T_{x_0} à C_f au point d'abscisse $x_0 = \frac{3}{2}$. $T_{_{\chi_{_{0}}}}\,$ coupe l'axe des abscisses en un unique point A .

Déterminer l'abscisse x_1 de A.

b) Tracer la tangente T_{x_1} à C_f au point d'abscisse x_1 . T_{x_1} coupe l'axe des abscisses en un unique point B d'abscisse x_2 . Que dire de x_2 ?

2) Mise en place de l'algorithme :

Revenons sur le cas général . Soit f une fonction dont la dérivée est strictement positive sur $\mathbb R$ et telle que f(x)=0 admette une unique solution α . On note C_f sa courbe représentative . Soit x_0 un réel supérieur à α .

a) Déterminer l'équation de la tangente T_{x_0} à C_f au point d'abscisse x_0

b) Démontrer que l'abscisse x_1 du point d'intersection A_1 de T_{x_0} avec l'axe des abscisses vaut $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$. On peut alors répéter ce procédé en remplaçant x_0 par la nouvelle abscisse x_1 , et ainsi obtenir des réels x_1 , x_2 , x_3 ... de plus en plus proche de α .

c) On s'intéresse à nouveau à la fonction f définie par $f(x) = x^3 + x - 3$. Compléter les pointillés dans le programme suivant écrit en Python pour qu'il affiche les valeurs x_1 ,..., x_{10} .

(A faire pour un polynôme de degré 3 quelconque)

```
def f(a,b,c,d,x):
2
      return .....
3
4
     def der_f(a,b,c,x):
5
      return .....
6
7
     a=float(input("a="))
8
     b=float(input("b="))
9
     c=float(input("c="))
10
     d=float(input("d="))
     x=float(input("x="))
11
12
     for i in range(1, \ldots):
13
14
        print(x)
```

d) On se propose maintenant de trouver un réel x tel que $|f(x)| < 10^{-p}$ et en insérant un compteur .

Pour cela, compléter les pointillés dans le programme ci-dessous :

```
def f(a,b,c,d,x):
2
     return a*x**3+b*x**2+c*x+d
3
4
    def der_f(a,b,c,x):
5
     return 3*a*x**2+2*b*x+c
6
7
    a=float(input("a="))
8
    b=float(input("b="))
9
    c=float(input("c="))
10
    d=float(input("d="))
11
    x=float(input("x="))
12
    p=int(input("p="))
13
    nb etape= .....
14
    while ....:
       x=x-f(a,b,c,d,x)/der_f(a,b,c,x)
15
16
       nb_etape= .....
17
    print(x,"en",nb_etape,"étapes")
```

3) **Application:**

Étudier la fonction $g:x \mapsto x^3-x^2+2x$, vérifier que sa fonction dérivée est strictement positive, puis que l'équation g(x)=1 admet une unique solution α .