Chapitre 8 - SUITES ARITHMÉTIQUES et SUITES GÉOMÉTRIQUES

1) SUITES ARITHMÉTIQUES

A) DÉFINITION PAR RÉCURRENCE

Définition:

On dit qu'une suite (u_n) est une <u>suite arithmétique</u>, s'il existe un réel r tel que pour tout entier naturel n, on ait $u_{n+1} = u_n + r$.

Le réel r est appelé <u>raison</u> de la suite (u_n) .

r peut-être positif ou négatif .

Exemples:

- La suite des entiers naturels est une suite arithmétique de raison
- La suite des entiers naturels impairs est une suite arithmétique de raison
- Soit (u_n) la suite définie par $u_n = 4 n + 5$.

L'astuce : calculer $u_{n+1} - u_n$

Plus généralement, on montre de la même façon, que toute suite (u_n) définie par $u_n = an + b$ (où $a \in \mathbb{R}$ et $b \in \mathbb{R}$) est une suite arithmétique de raison a et de premier terme b.

Et la réciproque!!!

B) DÉFINITION PAR UNE FORMULE EXPLICITE

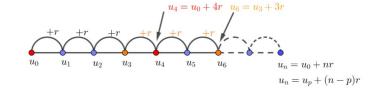
Propriété :

Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r. Alors, pour tout entier naturel n, on a : $u_n = u_0 + nr$

Preuve:

Additionnons membre à membre les n égalités ci-dessous:

$$\begin{cases} u_1 = u_0 + r \\ u_2 = u_1 + r \\ \vdots \\ u_{n-1} = u_{n-2} + r \\ u_n = u_{n-1} + r \end{cases}$$



On obtient:

Et après simplification :

Exemple

Soit (u_n) la suite arithmétique définie par $u_0 = 7$ et r = 12, alors $u_6 =$

Propriété:

Soit (u_n) une suite arithmétique de raison r. Pour tous entiers naturels n et p, on a : $u_n = u_p + (n-p) r$

Preuve: (Pour la preuve, on suppose que le premier terme de la suite est u_0)

Intérêts:

- Cette formule permet de calculer n'importe quel terme d'une suite arithmétique dès que l'on connaît la raison et un terme quelconque (il n'est pas nécessaire de connaître u_0)
 - Cette formule permet aussi de calculer la raison d'une suite arithmétique dont on connaît deux termes.

Exemples:

- Soit (u_n) une suite arithmétique telle que $u_2 = 4$ et $u_4 = 10$.
- Soit (u_n) une suite arithmétique définie par $u_{10} = 30$ et r = 2. On a $u_{20} =$

C) MONOTONIE

Les résultats suivants ne sont pas surprenants :

Propriété:

Soit (u_n) une suite arithmétique de raison r.

- Si r > 0, alors la suite (u_n) est strictement croissante.
- Si r < 0, alors la suite (u_n) est strictement décroissante.
- Si r=0, alors la suite (u_n) est constante.

D) SOMME DE TERMES CONSÉCUTIFS

Remarque préliminaire :

NOMBRE DE TERMES D'UNE SOMME

 $u_1 + u_2$ est une somme de deux termes ; $u_1 + u_2 + u_3$ est une somme de trois termes De manière générale, $u_1 + u_2 + ... + u_p$ est une somme de p termes .

Comment faire (sans compter sur les doigts) pour calculer le nombre de termes de la somme $u_{12} + u_{13} + ... + u_{56}$?

Plus généralement :

Le nombre de termes de la somme $u_p + u_{p+1} + ... + u_q$ (p , q entiers naturels tels que $p \le q$) est q - p + 1

Étude d'un exemple fondamental : SOMME DES n PREMIERS ENTIERS NATURELS

On considère la suite (u_n) définie, pour tout entier naturel n, par $u_n = n$. Calculons la somme $S = u_1 + u_2 + ... + u_n = 1 + 2 + ... + n$.

On peut écrire :

En additionnant membre à membre, on obtient :

Cas général: En utilisant la même idée,

a et b sont les termes extrêmes de S, r est la raison de la suite

On en déduit la formule ci-dessous qui n'est plus au programme, mais qui est encore très utilisée.

Propriété:

La somme de termes consécutifs d'une suite arithmétique est égale au **produit du nombre de termes par la demi-somme des termes extrêmes** .

 $S = nombre de termes \times \frac{premier terme + dernier terme}{2}$

Remarques: Moyenne arithmétique

- Si a, b et c sont trois termes consécutifs d'une suite arithmétique, alors $b = \frac{a+c}{2}$
- De manière plus générale, si u_p , u_{p+1} , ..., u_{p+n} sont n+1 termes consécutifs d'une suite arithmétique, alors la moyenne arithmétique de ces termes est la moyenne arithmétique des termes extrêmes : $\frac{u_p + u_{p+n}}{2}$

2) SUITES GÉOMÉTRIQUES

A) DÉFINITION PAR RÉCURRENCE

Définition:

On dit qu'une suite (u_n) est une <u>suite géométrique</u>, s'il existe un réel q tel que pour tout entier naturel n, on ait $u_{n+1} = qu_n$.

Le réel q est appelé **raison** de la suite (u_n) .

q peut-être positif ou négatif et non nul (sans intérêt)

Exemples:

- Soit (u_n) , la suite des puissances de 2, définie par $u_n = 2^n$
- Soit (v_n) la suite définie par $v_n = n \times 5^n$.
- Soit (w_n) la suite définie pour tout entier naturel n, par $w_n = 4 \times 3^n$

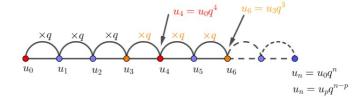
Plus généralement, on montre de la même façon, que toute suite (u_n) définie par $u_n = aq^n$ (où $a \in \mathbb{R}^*$ et $q \in \mathbb{R}^*$) est une suite géométrique de raison q et de premier terme a.

Et la réciproque !!!

B) DÉFINITION PAR UNE FORMULE EXPLICITE

Propriété:

Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. Alors, pour tout entier naturel n, on a: $u_n = u_0 q^n$



Preuve:

 (u_n) est une suite géométrique, donc $u_1 = u_0 q$.

Puis
$$u_2 = u_1 q = (u_0 q) q = u_0 q^2$$

Et ainsi de proche en proche, car lorsqu'on aura établi que pour l'entier naturel n, $u_n = u_0 q^n$, on en déduira que $u_{n+1} = u_0 q^{n+1}$. En effet $u_{n+1} = u_n q = u_0 q^n q = u_0 q^{n+1}$

Exemple: Soit u_n la suite géométrique définie par $u_0 = 7$ et q = 12, alors $u_3 = 12$

Plus généralement :

Soit (u_n) une suite géométrique de raison q. Pour tout entier naturel n et p, on a $u_n = u_p \times q^{n-p}$

Preuve : (Pour la preuve, on suppose que le premier terme de la suite est u_0)

<u>Intérêt</u>: Cette formule permet de calculer n'importe quel terme d'une suite géométrique dès que l'on connaît la raison et un terme quelconque (il n'est pas nécessaire de connaître u_0)

Exemples:

• Soit (u_n) une suite géométrique définie par $u_{10} = 30$ et q = 2.

On a $u_{13} =$

• Soit (v_n) une suite géométrique telle que $v_2 = 5$ et $v_8 = 320$.

Attention: Cette formule ne permet pas de calculer la raison d'une suite géométrique dont on connaît deux termes.

Remarque: Moyenne géométrique

Si a, b et c sont trois termes consécutifs d'une suite géométrique alors $b^2 = ac$. Si trois nombres positifs a, b et c vérifient $b^2 = ac$, on dit que b est la moyenne géométrique de a et c.

C) MONOTONIE

<u>Propriété :</u>

Soit (u_n) une suite géométrique de raison q (strictement positive) et de terme initial u_0 .

- Si 0 < q < 1 et $u_0 < 0$, alors la suite (u_n) est strictement croissante. Si 0 < q < 1 et $u_0 > 0$, alors la suite (u_n) est strictement décroissante.
- Si q>1 et $u_0<0$, alors la suite (u_n) est strictement décroissante. Si q>1 et $u_0>0$, alors la suite (u_n) est strictement croissante.
- Si q = 1, alors la suite (u_n) est constante.

Idée de preuve :

Soit $n \in \mathbb{N}$.

On a $u_n = u_0 \times q^n$ et $u_{n+1} = u_0 \times q^{n+1}$

Si q < 0 la suite est alternativement positive puis négative ...

D) SOMME DE TERMES CONSÉCUTIFS

Étude d'un exemple fondamental : SUITE GÉOMÉTRIQUE DE PREMIER TERME $u_0 = 1$.

On considère la suite (u_n) définie, pour tout entier naturel n, par $u_n = q^n$ ($q \ne 0$ et $q \ne 1$) Calculons la somme $S = u_0 + u_1 + ... + u_n = 1 + q + q^2 + ... + q^n$.

On peut écrire :

Par soustraction membre à membre, on obtient :

<u>Cas général</u>: Soit (u_n) une suite géométrique de raison $q \ (q \neq 0, q \neq 1)$.

Calculons la somme $S = u_4 + u_5 + ... + u_8$ On a $S = u_4 + qu_4 + q^2 u_4 + q^3 u_4 + q^4 u_4 =$

Ainsi S =

On en déduit la formule ci-dessous qui n'est plus au programme, mais qui est encore très utilisée.

Propriété:

Pour calculer la somme de termes consécutifs d'une suite géométrique de raison $\,q\,$, on applique la formule suivante :

$$S = \text{premier terme} \times \frac{1 - q^{\text{nombre de term}}}{1 - q}$$

3) LIMITES DES SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

A) SUITES ARITHMÉTIQUES (évident)

Propriété :

Toute suite arithmétique de raison r non nulle est divergente.

- Si r > 0, alors $\lim_{n \to +\infty} u_n = +\infty$
- Si r < 0, alors $\lim_{n \to +\infty} u_n = -\infty$

B) SUITES GÉOMÉTRIQUES (qⁿ) (admis)

Propriété:

Soit q un réel.

- Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$
- Si q = 1, alors pour tout n, $q^n = 1$ et donc $\lim_{n \to +\infty} q^n = 1$
- Si q > 1, alors la suite (q^n) est divergente et $\lim_{n \to +\infty} q^n = +\infty$
- Si $q \le -1$, alors la suite (q^n) est divergente

Exemple:

Remarque:

On en déduit facilement le cas général $u_o q^n$...

Exemple:

Soit (u_n) la suite définie par $u_n = -5 \times 2^n$.

On a vu que $\lim_{n \to +\infty} 2^n = +\infty$. On en déduit que