Thèmes d'étude :

Modèles définis par une fonction d'une variable

Modèles d'évolution

Calculs d'aires

Nombre dérivé d'une fonction en « un point »

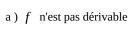
Ex 3-1: Vrai ou faux : restituer les notions du cours

- 1) Pour savoir si une fonction est dérivable en un réel a , on regarde la limite de $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers a .
- 2) Il est possible qu'une fonction ne soit pas dérivable en un réel a .
- 3) Si une fonction f est dérivable en a , la tangente à la courbe représentative de f au point d'abscisse a admet pour équation y=f'(a)(x-a)+f(a)
- 4) Si une fonction f est dérivable en a , le coefficient directeur de la tangente à la courbe représentative de f au point d'abscisse a est égal à la limite d'un taux de variations de f .

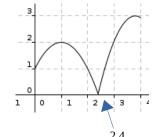
Ex 3-2: QCM: restituer les notions du cours

Soit f la fonction définie sur [0;4] représentée ci-dessous :

1) Au point d'abscisse 1:



- b) f est dérivable et f'(1)=0
- c) f est dérivable et f'(1)=2



- 2) Au point d'abscisse 2,4:
 - a) f n'est pas dérivable
 - b) f est dérivable et f'(2,4)=-1
 - c) f est dérivable et f'(2,4)=1
- 3) Au point d'abscisse 0:
 - a) f n'est pas dérivable
 - b) f est dérivable et $f'(0) \approx 2$
 - c) f est dérivable et $f'(0) \approx 1$

Ex 3-3 : Calculer le nombre dérivé

Déterminer si le nombre dérivé de la fonction f en a existe et, si c'est le cas, calculer f'(a).

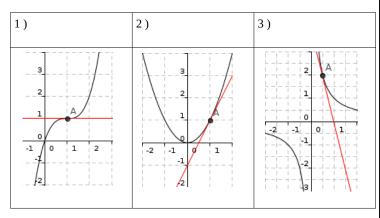
1)
$$f: x \mapsto x\sqrt{x}$$
, $a=0$

2)
$$f:x \mapsto |x-3|$$
, $a=3$

3) $f:x \mapsto |x-5|$, a=3

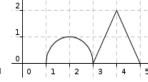
Ex 3-4: Déterminer f'(a) à l'aide d'un graphique.

Dans chacun des cas ci-dessous, on considère la courbe représentative $\, {\rm C}_f \,$ d'une fonction $\, f \,$, et ${\rm A}$ un point de $\, {\rm C}_f \,$ d'abscisse $\, a \,$. Déterminer $\, f'(a) \,$.



Ex 3-5 : Déterminer l'équation d'une tangente à l'aide d'un graphique

Soit f la fonction définie sur [1;5] dont la courbe représentative est donnée ci-contre : Déterminer si f est dérivable en a .



Si tel est le cas, déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse a .

1)
$$a=1$$

2)
$$a=2$$

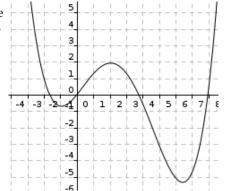
$$3) a=3$$

4)
$$a = 4$$

5)
$$a = 5$$

Ex 3-6: Signe du nombre dérivé

La courbe représentative d'une fonction dérivable a été tracée ci-contre.



Déterminer graphiquement le signe (ou l'éventuelle nullité) des réels suivants :

- a) f'(-3)
- b) f'(1)
- c) $f'\left(\frac{4}{5}\right)$

- d) f'(2)
- e) f'(5)
- f) $f'\left(\frac{50}{7}\right)$

Calculs de dérivées

Ex 3-7:

Dans chacun des cas, calculer la dérivée, en indiquant sur quel ensemble les calculs sont valables.

a)
$$f:x \mapsto (x-2)\times(x-4)$$

b)
$$f:x \mapsto \frac{x}{x^2-1}$$

c)
$$f:x \mapsto \frac{x-2}{\sqrt{x}}$$

d)
$$f:x \mapsto (x^2-1)\sqrt{x}$$

$$i) \quad f:x \mapsto \sqrt{3x-7}$$

$$j) \quad f:x \mapsto \sqrt{x^2+5}$$

e)
$$f: x \mapsto 3x^3 - 2x^2 + 2x + 5$$

f)
$$f:x \mapsto (3x-2)^2 + e^x$$

Ex 3-8:

Dans chacun des cas, calculer la dérivée, en indiquant sur quel ensemble les calculs sont valables.

a)
$$f(x)=4x^3-2e^x$$

d)
$$f(x) = \frac{1}{e} - \frac{1}{e^x}$$

g)
$$f:x \mapsto (x-3)(x^4+1)$$

$$|h| f: x \mapsto x\sqrt{x} + \frac{1}{x}$$

b)
$$f(x) = -xe^x$$

e)
$$f(x)=3e^{x^3-1}$$

c) $f(x) = (4x-1)e^{\frac{1}{x}}$

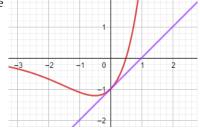
 $f(x) = \frac{2 - 3e^x}{1 + e^x}$

Tangentes

Ex 3-9: Déterminer a et b

On considère la fonction f définie sur \mathbb{R} par $f(x) = (ax + b)e^x$ où a et b sont deux réels . On note C sa courbe représentative et T la tangente au point d'abscisse 0.

1) Lire graphiquement la valeur de f(0) .



2) En déduire la valeur de $\,b\,$.

3) Lire graphiquement la valeur de f'(0) .

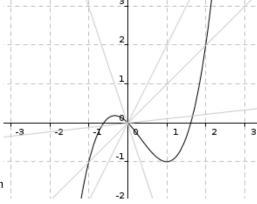
4) Calculer f'(x) et en déduire la valeur de a .

Ex 3-10 : Tangente parallèle à une droite donnée

On considère la fonction f définie sur \mathbb{R} par $f(x)=x^3-x^2-x$

On note C_f la courbe représentative de la fonction f dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

1) Déterminer la fonction dérivée de $\ f$.



2) Dans chacun des cas ci-dessous, déterminer lorsqu'elles existent, toutes les tangentes à $\,{\rm C}_f\,$ parallèles à la droite proposée . Lorsqu'elles existent, préciser l'équation de ces tangentes, puis tracer les sur le graphique ci-dessus.

a) $d_1: y=0$

 $b) d_2: y = x$

c) $d_3: y = -3x$

d)
$$d_4: y = \frac{1}{9}x$$

2)
$$f:x \mapsto \sqrt{4x^2-1}$$
, $I=\left[\frac{1}{2};+\infty\right[$

Dérivées, variations et extrema

Ex 3-11: Vrai ou faux : restituer les notions du cours

- 1) Si une fonction f est décroissante sur $\mathbb R$, alors f est dérivable sur $\mathbb R$ et sa dérivée est négative.
- 2) Si f est une fonction dont la dérivée est nulle, alors f est constante.
- 3) Si f est une fonction dérivable en a telle que f'(a) = 0 , alors f admet un maximum local en a .
- 4) Une fonction f admet un maximum local en 3 sur [1;4] s'il existe un intervalle ouvert]a;b[inclus dans [1;4] et contenant 3 tel que pour tout x appartenant à]a;b[, on a $f(x) \le f(3)$.
- 5) Si une fonction $\,f\,$ admet un maximum local en $\,a\,$, alors $\,f\,$ est dérivable en $\,a\,$.

Ex 3-12: Déterminer les variations d'une fonction

Dans chacun des cas ci-dessous, étudier les variations (sans les limites) de f sur I, puis déterminer les éventuels extrema de f .

1)
$$f: x \mapsto e^{x^5} + 1$$
, $I = \mathbb{R}$

3)
$$f:x \mapsto x + \frac{3}{x}$$
, $I = [1;4]$

4)
$$f:x \mapsto \frac{x-1}{2-x}$$
, $I=\mathbb{R}-[2]$

6)
$$f: x \mapsto e^{x^3 - \frac{9}{2}x^2 + 6x + 4}$$
, I=|R

5)
$$f: x \mapsto \frac{x^2 + 3x}{x + 1}$$
, $I = [0; 1]$

7)
$$f: x \mapsto x\sqrt{x} - x$$
, $I = \left[\frac{1}{4}; 6\right]$

Ex 3-13: Montrer des inégalités

Démontrer, à l'aide d'une étude de fonction, chacune des inégalités proposées sur l'intervalle I.

1)
$$\frac{1}{1-x} \le x-3$$
, $I=[2;+\infty[$

Aide : étudier la fonction $d:x \mapsto \frac{1}{1-x} - (x-3)$

2)
$$x^2 \ge x\sqrt{x} - \frac{1}{2}$$
, $I =]0;4]$

Ex 3-14: Trouver une fonction vérifiant des conditions

Dans chacun des cas suivants, donner un exemple d'une fonction (ou d'une représentation graphique de fonction) vérifiant la ou les conditions(s) proposée(s) :

1) f est dérivable sur $\mathbb R$, et sa fonction dérivée est négative sur $\mathbb R$.

2) f est définie sur \mathbb{R} , dérivable sur \mathbb{R}^* , décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .

3) f est définie et dérivable sur \mathbb{R}^* , et sa dérivée est positive sur \mathbb{R}^* .

4) f est définie sur \mathbb{R}^+ , dérivable uniquement sur \mathbb{R}^*_+ , et sa fonction dérivée est positive sur \mathbb{R}^*_+ .

5) f est dérivable sur $\mathbb R$ et admet un maximum local en 4.

6) f est dérivable sur \mathbb{R}^+ , sa fonction dérivée est positive sur \mathbb{R}^+ et s'annule en 0.

Ex 3-15: Position relative d'une courbe et d'une tangente en un point

Soit la fonction f définie sur $[0;+\infty[$ par $f(x)=x^3-2x$

1) Calculer f'(x) et en déduire le tableau de variations de f .

Ex 3-16: Position relative de deux courbes

soit f la fonction définie sur \mathbb{R} par $f(x)=x^2+3x+1$ et g la fonction définie sur $\mathbb{R}-[-2]$ par $g(x)=-\frac{1}{x+2}$.

On note $\,C_f\,$ et $\,C_g\,$ les courbes représentatives respectives des fonctions $\,f\,$ et $\,g\,$.

1) Étudier les variations de la fonction f et dresser sont tableau de variations.

2) Déterminer l'équation de la tangente T à la courbe C_f représentative de f au point A d'abscisse 1.

2) Étudier les variations de la fonction $\,g\,$ et dresser sont tableau de variations.

- 3) Soit g la fonction définie sur $[0;+\infty[$ par g(x)=x-2.
- a) Montrer que $f(x)-g(x)=(x-1)(x^2+x-2)$

b) Étudier le signe de h(x)=f(x)-g(x).

- 3) Soit *h* la fonction définie sur $\mathbb{R}-[-2]$ par h(x)=f(x)-g(x).
- a) Développer $(x+1)^2(x+3)$

b) Étudier le signe de h(x).

c) En déduire la position relative de $\ C_f$ par rapport à $\ T$.

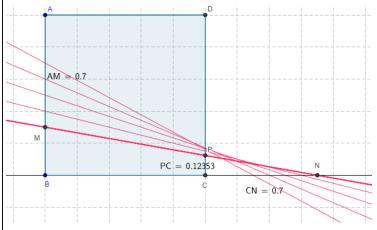
corrections: http://pierrelux.net

c) Déterminer la position relative de $\ C_f$ par rapport à $\ C_g$.

4) Démontrer que $\ C_f$ et $\ C_g$ admettent une tangente commune en un de leurs points d'intersection . Donner une équation de cette tangente.

Problèmes et algorithmes

Ex 3-18: Distance maximale



Ex 3-17 : Équations

1) Justifier que l'équation $x^5-2x^3+3x-20=0$ possède une unique solution α sur $\mathbb R$.

2) Avec la calculatrice, donner un encadrement de $\,\alpha\,$.

ABCD est un carré de côté 1. M est sur le segment [AB]. On place le point N tel que CN=AM sur la demi droite [BC) à l'extérieur du segment [BC].

La droite (MN) coupe (DC) en P. On pose AM = x avec $0 \le x \le 1$.

Le but de l'exercice est de trouver M sur [AB] tel que la distance PC soit maximale.

1) Démontrer que $PC = \frac{x - x^2}{1 + x}$

2) a) Étudier les variations de la fonction f définie sur [0;1] par $f(x) = \frac{x - x^2}{1 + x}$

Le but du problème est de déterminer les coordonnées du point P pour que l'aire du triangle rectangle AHP soit maximale.

- 1) Déterminer les coordonnées des points A et B.
- ig| 2) On note f(x) , l'aire du triangle en fonction de $\ x$.
- a) Déterminer l'ensemble de définition de $\,f\,$.
- b) Montrer que $f(x) = -\frac{1}{9}x^3 \frac{2}{3}x^2 + 4x + 24$

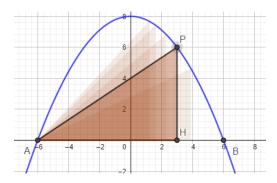
3) Étudier les variations de f .

b) En déduire la valeur de *x* pour laquelle la distance PC est maximale.

Ex 3-19: Parabole et aire maximale

La parabole d'équation $y = -\frac{2}{9}x^2 + 8$ coupe l'axe des abscisses en A et B.

Le point P(x; y) se déplace sur la parabole entre A et B.



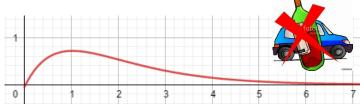
4) Répondre au problème posé.

Ex 3-20: Taux d'alcoolémie

Un étude sur un jeune homme de 64kg ayant ingéré une dose de 33g d'alcool a permis d'établir que le taux d'alcool dans le sang, en fonction du temps t en heure, est donné par la fonction f définie sur l'intervalle $[0;+\infty[$ par :

$$f(t) = (2t - 0, 05)e^{-t}$$

La représentation graphique de cette fonction dans un repère orthonormé est donnée ci-dessous :



1) Avec la précision permise par le graphique, déterminer combien de temps après l'ingestion le taux d'alcool passe au-dessous du seuil de 0,25 $\rm~g.L^{-1}$

2) Un taux d'alcool dans le sang inférieur à 0,001 $\,$ g. $L^{^{-1}}\,$ est considéré comme négligeable.

En complétant, puis en utilisant le programme écrit en python ci-dessous, déterminer à partir de combien de temps (à 10^{-2} près) le taux d'alcool dans le sang du jeune homme est négligeable ?

3) Déterminer le tableau de variation de $\,f\,\,$.

Ex 3-21: Décroissance radioactive

On étudie une population de noyaux radioactifs de carbone 14 au cours du temps.

À l'instant t=0, la population est composée de N_0 noyaux radioactifs de carbone 14.

On modélise le nombre de noyaux radioactifs de carbone 14 à l'instant t, exprimé en milliers d'années, par la fonction N définie sur $[0;+\infty[$ par : $N(t)=N_0e^{-0,121\,t}$

1) Étudier les variations de la fonction N sur $[0;+\infty[$.

2) a) On appelle demi-vie du carbone 14 le temps T au bout duquel la population de noyaux radioactifs a diminué de moitié.

Justifier que
$$e^{-0.0121T} = \frac{1}{2}$$

b) Déterminer avec un programme écrit en python une valeur approchée au millième de la demi-vie T du carbone 14.

3) a) Démontrer que
$$N(2T) = \frac{N_0}{4}$$

4) En déduire une valeur approchée au centième du taux maximum d'alcool dans le sang du jeune homme.

b) En déduire au bout de combien de temps le nombre de noyaux radioactifs de carbone 14 n'est plus égal qu'au quart de sa valeur initiale.