LOGARITHME NÉPÉRIEN

1) FONCTION RÉCIPROQUE

Définition:

Soit f une fonction définie, continue et strictement monotone sur un intervalle I et à valeurs dans un intervalle J.

Pour tout réel y appartenant à J, d'après le corollaire du TVI, l'équation f(x) = y admet une unique solution dans I.

La fonction définie sur J qui à y associe x est appelé fonction réciproque de la fonction f . On la note f^{-1}

Exemple: Soit f la fonction définie sur \mathbb{R}^+ par $f(x)=x^2$.

f est continue et strictement croissante sur \mathbb{R}^+ et à valeurs dans \mathbb{R}^+ .

Pour tout réel $y \ge 0$, l'équation $x^2 = y$ admet une unique solution : $x = \sqrt{y}$.

La fonction $f^{-1}:x \mapsto \sqrt{x}$ définie sur \mathbb{R}^+ est la fonction réciproque de la fonction carrée. C'est la fonction racine carrée.

Propriété:

Soit f une fonction définie, continue et strictement monotone sur un intervalle I et à valeurs dans un intervalle J, et f^{-1} sa fonction réciproque.

- Pour tout réel x appartenant à J, on a $f(f^{-1}(x))=x$
- Pour tout réel x appartenant à I, on a $f^{-1}(f(x))=x$

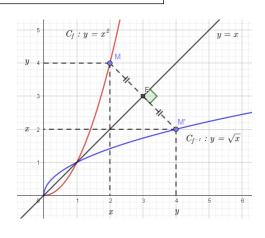
•
$$\begin{cases} x \in I \\ y = f(x) \end{cases} \Leftrightarrow \begin{cases} y \in J \\ x = f^{-1}(y) \end{cases}$$

Propriété: Représentation graphique

Soit f une fonction définie, continue et strictement monotone sur un intervalle I et à valeurs dans un intervalle J, et f^{-1} sa fonction réciproque.

On note respectivement C_f et $C_{f^{-1}}$ les courbes représentatives de f et f^{-1} dans un repère orthonormé $(\mathbf{O};\overrightarrow{i},\overrightarrow{j})$.

Les courbes C_f et $C_{f^{-1}}$ sont symétriques par rapport à la droite d'équation y=x.



2) DÉFINITION DE LA FONCTION LOGARITHME NÉPÉRIEN

La fonction exponentielle et définie et continue sur \mathbb{R} . De plus, elle est strictement croissante et à valeurs dans $]0; +\infty[$. Pour tout $y \in]0; +\infty[$, il existe <u>un unique</u> réel x tel que $e^x = y$. Ce réel se note $x = \ln y$, ce qui se lit logarithme népérien de y.

Définition :

On appelle <u>fonction logarithme népérien</u> la fonction qui à un réel x strictement positif, fait correspondre $\ln(x)$.

$$\ln:]0; +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \ln x$

On écrit souvent $\ln x$ au lieu de $\ln(x)$

Remarque:

L'équivalence $\begin{cases} x \in \mathbb{R}_+^* \\ y = \ln x \end{cases} \Leftrightarrow \begin{cases} y \in \mathbb{R} \\ e^y = x \end{cases}$ traduit le fait que les fonctions exponentielle et logarithme népérien sont réciproques l'une de l'autre.

Propriétés:

• Pour tout réel x strictement positif, on a $e^{\ln x} = x$

• $\ln 1 = 0$

Résulte de la définition

• Pour tout réel x, on a $\ln (e^x) = x$

• $\ln e = 1$

Remarque:

La fonction exponentielle transformant une somme en produit, on peut penser que la fonction logarithme népérien qui est sa fonction réciproque, transforme un produit en somme.

3) PROPRIÉTÉS ALGÉBRIQUES

Propriétés :

Pour tous réels a et b strictement positifs on a :

• $\ln(a \times b) = \ln a + \ln b$

On peut généraliser cette propriété à plusieurs nombres.

•
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

• $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$

• $\ln(\sqrt{a}) = \frac{1}{2} \ln a$

• Pour tout $n \in \mathbb{Z}$, $\ln(a^n) = n \ln a$

Preuve: (des deux premiers points)

Les démonstrations se font principalement en utilisant les propriétés de la fonction exponentielle.

• $e^{\ln a + \ln b} = e^{\ln a} \times e^{\ln b} = a \times b$. Or si $e^y = x$, alors $y = \ln x$. On a donc $\ln a + \ln b = \ln (a \times b)$

• $e^{-\ln a} = \frac{1}{e^{\ln a}} = \frac{1}{a}$ donc $-\ln a = \ln \left(\frac{1}{a}\right)$

4) ÉTUDE DE LA FONCTION LOGARITHME NÉPÉRIEN

Propriété:

La fonction ln est strictement croissante sur \mathbb{R}_+^* .

La croissance de la fonction ln est lente. Par exemple : $\ln (10^8) \approx 18,42$

Conséquences:

Pour tous réels a et b strictement positifs on a :

- $\ln a = \ln b \Leftrightarrow a = b$
- $\ln a < \ln b \Leftrightarrow a < b$

- $\ln a \le \ln b \Leftrightarrow a \le b$
- $a > 1 \Leftrightarrow \ln a > 0$
- si 0 < a < 1 alors $\ln a < 0$

Propriété:

La fonction ln est continue et dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, on a $\ln f(x) = \frac{1}{x}$

Remarque:

On sait que pour tout x > 0, $e^{\ln x} = x$.

En supposant la fonction ln dérivable sur \mathbb{R}_+^* et en utilisant la propriété de dérivation de $e^{u(x)}$ on peut écrire pour tout x > 0:

 $(e^{\ln x})' = (\ln x)' \times e^{\ln x} \Leftrightarrow (x)' = (\ln x)' \times x \Leftrightarrow (\ln x)' = \frac{1}{x}$ (et en acceptant les abus de notation pour faciliter)

Limites classiques à connaître :

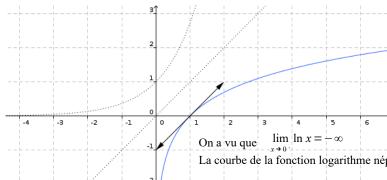
$$\lim_{n \to \infty} \ln x = +\infty$$

$$\lim_{n \to \infty} \ln x = -\infty$$

Tableau de variations :

X	0 +∞
ln	-∞

Représentation graphique :



Les fonctions exponentielle et logarithme népérien étant réciproques l'une de l'autre, leurs courbes dans un repère orthonormal sont symétriques par rapport à la droite d'équation y=x.

La courbe de la fonction logarithme népérien a pour asymptote verticale l'axe (Oy).

D'autres limites classiques à connaître :

$$\lim \frac{\ln x}{x} = 0$$

$$\lim_{x \to 0^+} x \ln x = 0$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Limites classiques de la fonction exponentielle à connaître :

•
$$\lim e^x = +\infty$$

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$\lim_{x \to \infty} x e^x = 0$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

<u>**5**) DÉRIVÉE DE</u> $x \mapsto \ln(u(x))$

Propriété:

Soit u une fonction dérivable et strictement positive sur un intervalle I.

La fonction $f: x \mapsto \ln(u(x))$ est dérivable sur I, et pour tout $x \in I$, on a : $f'(x) = \frac{u'(x)}{u(x)}$