ÉQUATIONS DIFFÉRENTIELLES - PRIMITIVES

1) LA NOTION D'ÉQUATION DIFFÉRENTIELLE

Définitions:

- <u>Une équation différentielle</u> est une équation où l'inconnue est une fonction f. L'inconnue est souvent notée y et les dérivées successives sont notées y', y'' ...
- Une équation du premier ordre est une équation qui ne contient que la fonction et au moins sa fonction dérivée.
- Une équation du second ordre est une équation qui ne contient que la fonction, sa fonction dérivée et au moins sa dérivée seconde.
- Quand une équation est de la forme y + ay + by'' + ... = 0, on dit qu'elle est <u>linéaire</u>.

Exemple: Si on monte en série une diode, une bobine et une résistance, l'équation différentielle qui caractérise l'intensité est $i' + \frac{R}{l}i = 0$

2) PRIMITIVES

A) DÉFINITION

Définition:

Soit f une fonction définie sur un intervalle I.

Une primitive de f sur I est une fonction F dérivable sur I, telle que pour tout x dans I, F'(x) = f(x).

Une fonction est souvent notée par une lettre minuscule et l'usage est de noter une primitive (si elle existe) par la majuscule associée.

Remarques:

- Voilà donc un exemple d'équation différentielle : On cherche une fonction y, telle que y'=f.
- La recherche d'une primitive est l'opération inverse de la dérivation.
- De nombreuses fonctions n'admettent pas de primitives.
- On admet ici, mais nous le démontrerons dans le chapitre sur les intégrales que toute fonction continue sur un intervalle admet des primitives.

B) LIEN ENTRE DEUX PRIMITIVES

Propriété:

Soit f une fonction définie sur un intervalle I.

Si F est une primitive de f sur I, alors f admet une infinité de primitives. Toute autre primitive de f sur I est définie par G(x)=F(x)+k où $k \in \mathbb{R}$

On dit que deux primitives d'une fonction sur un intervalle diffèrent d'une constante.

Preuve:

- F est dérivable sur I et F' = f. La fonction G est aussi dérivable sur I avec G' = F' = f. Donc G est une primitive de f sur I.
- Inversement, si G est une primitive de f sur I alors G' = f = F' d'où G' F' = 0. La dérivée de G - F est nulle sur l'intervalle I donc G - F est constante sur I. Il existe donc un réel k tel que pour tout x de I, G(x) - F(x) = k, d'où le résultat.

Propriété:

Soit f une fonction admettant des primitives sur I.

Pour tout couple de réels $(x_0; y_0)$ où x_0 est un réel donné dans I et y_0 est un réel quelconque, il existe une primitive et une seule F_0 de f sur I telle que $F_0(x_0) = y_0$

Preuve:

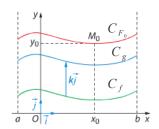
$$F_0(x_0) = y_0 \Leftrightarrow F(x_0) + k = y_0 \Leftrightarrow k = y_0 - F(x_0)$$

Donc l'unique primitive F_0 de f sur I vérifiant $F_0(x_0) = y_0$ est définie par $F_0(x) = F(x) + y_0 - F(x_0)$.

Remarque:

Les courbes représentatives des primitives de f se déduisent donc l'une de l'autre par des translations de vecteurs $k \vec{j} (k \in \mathbb{R})$.

Une seule d'entre elles passe par le point M_0 de coordonnées $(x_0; y_0)$



C) CALCULS DE PRIMITIVES

Les opérations sur les fonctions dérivables et la définition d'une primitive conduisent aux résultats suivants :

- si F et G sont des primitives des fonctions f et g sur un intervalle I, alors F + G est une primitive de f + g sur I.
- si F est une primitive de la fonction f sur un intervalle I et λ un réel, alors λ F est une primitive de λ f sur I.

Par ailleurs, les résultats connus sur les dérivées des fonctions usuelles donnent par « lecture inverse » les primitives.

Fonctions	Primitives ($k \in \mathbb{R}$)	Intervalle
$f(x)=a \ (a\in\mathbb{R})$	F(x) = ax + k	IR
$f(x) = x^n (n \in \mathbb{N}^*)$	$F(x) = \frac{x^{n+1}}{n+1} + k$	IR
$f(x) = \frac{1}{x}$	$F(x) = \ln(x) + k$	IR [*]
$f(x) = \frac{1}{x^n} \ (\ n \in \mathbb{N}^* - [1] \)$	$F(x) = -\frac{1}{(n-1)x^{n-1}} + k$	
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + k$	IR [*] ,
$f(x) = e^x$	$F(x) = e^x + k$	IR

On retiendra aussi le tableau suivant :

Pour une fonction u dérivable sur un intervalle I, on a :

Une fonction de la forme	admet pour primitive sur I les fonctions :
u'e ^u	$e^{u} + k$, où $k \in \mathbb{R}$
$u' \times u^n$, où $n \in \mathbb{Z} (n \neq -1)$	$\frac{u^{n+1}}{n+1} + k \text{ , où } k \in \mathbb{R}$
$\frac{u'}{\sqrt{u}}$, avec pour tout $x \in I$, $u(x) > 0$	$2\sqrt{u}+k$, où $k\in\mathbb{R}$
$\frac{u'}{u}$, avec pour tout $x \in I$, $u(x) > 0$	$\ln(u) + k$, où $k \in \mathbb{R}$

3) ÉQUATION LINÉAIRE DU PREMIER ORDRE

Une équation linéaire du premier ordre <u>homogène</u> est une équation linéaire de la forme y' + ay = 0 (où $a \in \mathbb{R}$)

Résoudre dans \mathbb{R} l'équation différentielle y'+ay=0 d'inconnue la fonction y, c'est trouver toutes les fonctions f dérivables sur \mathbb{R} , telles que pour tout réel x, f'(x)+af(x)=0.

Pour simplifier, les fonctions considérées seront toujours définies sur R . On ne le répétera donc pas à chaque fois.

Propriété: Équation linéaire du premier ordre homogène

Les solutions de l'équation différentielle y'+ay=0 (où $a\in\mathbb{R}$) sont les fonctions de la forme y(x)=k e^{-ax} où $k\in\mathbb{R}$

On démontre facilement que la somme de deux solutions et le produit d'une solution par une constante sont encore solutions.

Exemple : Déterminer les solutions de l'équation différentielle y' + 5y = 0.

Les solutions de l'équation différentielle y'+5 y=0 sont les fonctions de la forme y(x)=k e^{-5x} où $k \in \mathbb{R}$

Remarques:

L'équation différentielle y' + 5 y = 0 peut aussi se noter f'(x) + 5 f(x) = 0 ou encore $\frac{dy(x)}{dx} + 5$ y(x) = 0.

Cette dernière notation est très utilisée dans les différents domaines des sciences physiques.

Avec GeoGebra, on a représenté les solutions pour différentes valeurs de $k: k=10, k=9, \dots$

☐ Objets libres
☐ k = 1
☐ Objets dépendants
☐ B = (0, 1)
☐ f(x) = e^(-5 x)

L'équation admet une infinité de solutions, autant que de valeurs différentes de \dot{k} .

On peut observer qu'il n'y a qu'une seule courbe telle que f(0)=1.

Propriété: Solution vérifiant une condition initiale donnée

Pour tout couple de réel $(x_0; y_0)$, l'équation y' + ay = 0 (où $a \in \mathbb{R}$) admet une solution et une seule telle que $f(x_0) = y_0$

Exemple : Déterminer la solution de l'équation différentielle y' + 5y = 0 telle que f(0) = 5

Il suffit de résoudre l'équation $k e^{-5 \times 0} = 5$. On trouve k = 5

L'unique solution est donc la fonction définie par $f(x)=5e^{-5x}$

Propriété: Équation linéaire du premier ordre avec second membre constant (preuve en exercice)

Les solutions de l'équation différentielle y' + ay = b (où $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$) sont les fonctions de la forme $y(x) = k e^{-ax} + \frac{b}{a}$ où $k \in \mathbb{R}$

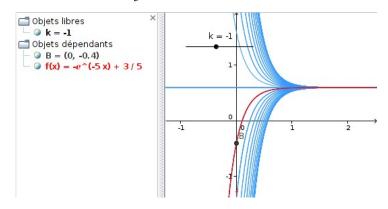
Exemple : Déterminer les solutions de l'équation différentielle y' + 5y = 3.

Les solutions de l'équation différentielle y'+5 y=3 sont les fonctions de la forme y(x)=k $e^{-5x}+\frac{3}{5}$ où $k \in \mathbb{R}$

Avec GeoGebra, on a représenté les solutions pour différentes valeurs de $k: k=10, k=9, \dots$

L'équation admet une infinité de solutions, autant que de valeurs différentes de $\it k$

On peut observer qu'il n'y a qu'une seule courbe telle que f(0) = -0.4.



<u>Propriété</u>: Solution vérifiant une condition initiale donnée

Pour tout couple de réel $(x_0; y_0)$, l'équation y' + ay = b (où $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$) admet une solution et une seule telle que $f(x_0) = y_0$

Exemple: Déterminer la solution de l'équation différentielle y' + 5 y = 3 telle que f(0) = 1.

Il suffit de résoudre l'équation $k e^{-5\times0} + \frac{3}{5} = 1$. On trouve $k = \frac{2}{5} = 0.4$

L'unique solution est donc la fonction définie par $f(x) = 0.4e^{-5x} + \frac{3}{5}$