CONVEXITÉ DES FONCTIONS

1) DÉFINITIONS

Définitions:

- Une fonction f, définie, dérivable (donc continue) sur un intervalle I est **convexe** sur I si sa représentation graphique est entièrement située en dessous de chacune de ses sécantes entre les deux points d'intersections.
- Une fonction f, définie, dérivable (donc continue) sur un intervalle I est <u>concave</u> sur I si sa représentation graphique est entièrement située au-dessus de chacune de ses sécantes entre les deux points d'intersections.

Autres définitions :

- Une fonction f, définie, dérivable (donc continue) sur un intervalle I est <u>convexe</u> sur I si sa représentation graphique est entièrement située au-dessus de chacune de ses tangentes.
- Une fonction f, définie, dérivable (donc continue) sur un intervalle I est **concave** sur I si sa représentation graphique est entièrement située en dessous de chacune de ses tangentes.

Exemples: $y = x^2$ $y = e^x$ $y = \ln(x)$

2) LIEN AVEC LA DÉRIVÉE

Propriété:

Soit f une fonction dérivable sur un intervalle I.

- f est convexe sur I si et seulement si sa dérivée est croissante sur I.
- f est concave sur I si et seulement si sa dérivée est décroissante sur I.

3) LIEN AVEC LA DÉRIVÉE SECONDE

La dérivée de la dérivée étant la dérivée seconde, on en déduit facilement cette nouvelle propriété ...

Propriété :

Soit f une fonction deux fois dérivable sur un intervalle I.

- f est convexe sur I si et seulement si sa dérivée seconde est positive sur I.
- ullet f est concave sur I si et seulement si sa dérivée seconde est négative sur I.

Si f est dérivable sur I et si f ' est aussi dérivable sur I, alors on dit que f est <u>deux fois dérivable</u> sur I.

4) POINT D'INFLEXION

Définition:

<u>Un point d'inflexion</u> est un point où la représentation graphique d'une fonction traverse sa tangente

<u>Propriété :</u>

Dire que la courbe représentative d'une fonction traverse sa tangente en un point signifie que la fonction change de convexité en ce point.

Cela se traduit par un changement de signe de la dérivée seconde en ce point.

Exemple: Mise en évidence par le calcul du point d'inflexion de la fonction $f: x \mapsto x^3$.

