<u>Chapitre 14 - TRANSFORMATIONS DE VARIABLES ALÉATOIRES</u> <u>CONCENTRATION – LOI DES GRANDS NOMBRES</u>

1) TRANSFORMATIONS DE VARIABLES ALÉATOIRES

A) TRANSFORMATION AFFINE

Définition:

Soit $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et X une variable aléatoire.

On note x_1 , x_2 ,..., x_n les valeurs prises par X.

La variable aléatoire Y = aX + b est la variable aléatoire qui prend pour valeurs les réels $ax_1 + b$, $ax_2 + b$, ..., $ax_n + b$

Propriété:

Soit $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et X une variable aléatoire . On a :

$$E(aX+b)=aE(X)+b$$

$$V(aX+b)=a^2V(X)$$

Preuve: non exigible

On note x_1 , x_2 ,..., x_n les valeurs prises par X. On note $p_i = P(X = x_i)$ (pour i allant de 1 à n)

On a alors $E(X) = \sum_{i=1}^{m} p_i x_i$ et $V(X) = \sum_{i=1}^{m} p_i x_i^2 - E(X)^2$

•
$$E(aX+b) = \sum_{i=1}^{m} p_i(ax_i+b) =$$

Or
$$E(X) = \sum_{i=1}^{n} p_i x_i$$
 et $\sum_{i=1}^{m} p_i = 1$. On en déduit que $E(a X + b) = aE(X) + b$

•
$$V(a X + b) = \sum_{i=1}^{m} p_{i} (ax_{i} + b)^{2} - E(a X + b)^{2}$$

$$= \sum_{i=1}^{m} p_{i} \times (a^{2} x_{i}^{2} + 2 abx_{i} + b^{2}) - (a E(X) + b)^{2}$$

$$= \sum_{i=1}^{m} (p_{i} a^{2} x_{i}^{2} + p_{i} 2 abx_{i} + p_{i} b^{2}) - (a^{2} E(X)^{2} + 2 ab E(X) + b^{2})$$

Or
$$2 ab \sum_{i=1}^{m} p_i x_i = 2 ab E(X)$$
 et $b^2 \sum_{i=1}^{m} p_i = b^2 \times 1 = b^2$ Ainsi $V(a X + b) = a^2 \left(\sum_{i=1}^{m} p_i x_i^2 - E(X)^2 \right) + 2 ab E(X) + b^2 - 2 ab E(X) - b^2 = a^2 V(X)$

Exemple:

Soit X une variable aléatoire suivant la loi binomiale de paramètres n=6 et p=0,7 et soit Y=2X-3

On a $E(X)=6\times0,7=4,2$ et $V(X)=6\times0,7\times(1-0,7)=1,26$

On a donc:

$$E(Y) = e^{-\frac{1}{2}}$$
 et $V(Y) = e^{-\frac{1}{2}}$

B) SOMME DE DEUX VARIABLES ALEATOIRES

Définition:

Soit X et Y deux variables aléatoires.

X+Y est la variable aléatoire qui prend pour valeurs toutes les sommes possibles des valeurs de X et de Y.

Exemple:

Si
$$X(\Omega) = [1;2;3]$$
 et $Y(\Omega) = [10;20]$ alors $(X+Y)(\Omega) =$

Propriété: admise

Soit X et Y deux variables aléatoires . On a :

$$E(X+Y)=E(X)+E(Y)$$

Cette propriété et E(aX)=aE(X) caractérise

Exemple:

Soit X une variable aléatoire suivant la loi binomiale de paramètres n=6 et p=0,7 et Y une variable aléatoire suivant la loi binomiale de paramètres n=10 et p=0,2.

X+Y est une variable aléatoire dont les valeurs possibles sont [0,1,2,...,16] et $E(X+Y)=E(X)+E(Y)=6\times0,7+10\times0,2=6,2$

Propriété: admise

Soit X et Y deux variables aléatoires associées à deux expériences aléatoires telles que les conditions de réalisation sont **indépendantes** . On a :

$$V(X+Y)=V(X)+V(Y)$$

- On parle alors de

- Si les variables aléatoires ne sont pas indépendantes, on peut avoir $V(X+Y) \neq V(X) + V(Y)$

2) INÉGALITÉ DE BIENAYMÉ-TCHEBYCHEF

Propriété: admise

Soit X une variable aléatoire et δ un réel strictement positif . On a :

$$P(|X-E(X)| \ge \delta) \le \frac{V(X)}{\delta^2}$$

- δ est la lettre grecque

- La probabilité que les valeurs prises par X s'écartent d'au moins δ de E(X) est d'autant plus petite que δ est grand.

- $[E(X)-\delta;E(X)+\delta]$ est

Remarque: En utilisant l'évènement contraire on obtient :

<u>Cas particulier</u>: $\delta = 2\sigma(X)$ où $\sigma(X)$ est l'écart type de la variable aléatoire X.

$$On \ obtient \quad P(|X-E(X)| \! \geqslant \! 2 \ \sigma(X)) \! \leqslant \! \frac{V(X)}{(2 \ \! \sigma(X))^2} \quad \Rightarrow \quad$$

Ce qui signifie que la probabilité qu'une variable aléatoire prenne des valeurs s'écartant de son espérance d'au moins le double de son écart type est inférieure à $\frac{1}{4}$.

3) LOI DES GRANDS NOMBRES: LE CAS PARTICULIER DE LOI BINOMIALE

Propriété: admise

On considère un schéma de Bernoulli constitué de n répétitions d'une épreuve de Bernoulli de succès de probabilité p.

Pour tout $i \in [1,2,...,n]$, on note X_i la variable aléatoire, suivant la loi de Bernoulli de paramètre p, associée à la i-ème épreuve de Bernoulli prenant la valeur 1 en cas de succès et 0 dans le cas contraire . On a donc $P(X_i=1)=p$

- La variable aléatoire $S_n = \sum_{i=1}^n X_i = X_1 + X_2 + ... + X_n$ est égale au nombre de succès lors des n épreuves.
- S_n suit la loi binomiale de paramètres n et p.

Définition et propriété : admise

On appelle <u>moyenne empirique</u> des variables aléatoires X_1 , X_2 , ..., X_n , la variable aléatoire $M_n = \frac{X_1 + X_2 + ... + X_n}{n} = \frac{S_n}{n}$

Soit δ un réel strictement positif.

En appliquant l'inégalité de Bienaymé-Tchebychev à S_n et M_n , on obtient :

$$\mathbf{P}\big(|\mathbf{S}_n - np| \! \geqslant \! \delta\big) \! \leqslant \! \frac{np(1-p)}{\delta^2} \ \text{et} \ \mathbf{P}\big(|\mathbf{M}_n - p| \! \geqslant \! \delta\big) \! \leqslant \! \frac{p(1-p)}{n\,\delta^2}$$

La probabilité que les valeurs prises par S_n s'écartent d'au moins δ de son espérance np est d'autant plus petite que δ est grand.

Remarques: En utilisant l'évènement contraire on obtient :

et

4) LOI DES GRANDS NOMBRES

Définition:

Soit n expériences aléatoires identiques et indépendantes et X_1 , X_2 , ..., X_n les variables aléatoires toutes de même loi associées à ces expériences.

On note à nouveau $S_n = \sum_{i=1}^n X_i = X_1 + X_2 + ... + X_n$.

On appelle <u>moyenne empirique</u> des variables aléatoires X_1 , X_2 , ..., X_n , la variable aléatoire

$$\mathbf{M}_{n} = \frac{\mathbf{X}_{1} + \mathbf{X}_{2} + \ldots + \mathbf{X}_{n}}{n} = \frac{\mathbf{S}_{n}}{n}$$

Théorème : la loi des grands nombres

Soit une expérience aléatoire et X la variable aléatoire associée à cette expérience.

On répète n fois cette expérience de manière indépendante.

On obtient alors **un échantillon** de taille n composé de n variables aléatoires X_1 , X_2 , ..., X_n , suivant toute la même loi et donc d'espérance E(X) et de variance V(X).

Pour tout réel δ strictement positif, on a :

$$P(|M_n - E(X)| \ge \delta) \le \frac{V(X)}{n\delta^2}$$
 (inégalité de concentration)

L'écart entre la moyenne d'un échantillon d'une variable aléatoire et l'espérance de cette variable ne dépasse une valeur donnée à l'avance qu'avec une probabilité qui tend vers zéro quand le taille de l'échantillon tend vers l'infini . Ce qui s'écrit de manière mathématiques $\lim_{n\to +\infty} P(|M_n-E(X)| \ge \delta) = 0$

On a:

 $E(S_n) = nE(X)$ et $V(S_n) = nV(X)$

$$E(\mathbf{M}_n) = E(\mathbf{X})$$
 et $V(\mathbf{M}_n) = \frac{V(\mathbf{X})}{n}$

On dit que M_n converge en probabilité vers E(X) quand n tend vers $+\infty$.