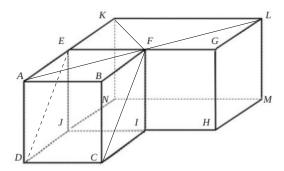
VECTEURS, DROITES ET PLANS DE L'ESPACE

Avant tout, rappelons une propriété fondamentale :

Tout théorème de géométrie plane s'applique dans n'importe quel plan de l'espace.

Les exemples de ce chapitre se réfèrent à la figure ci-contre

ABCDEFIJ est un cube EGHJKLMN est un parallélépipède rectangle tel que HM = CI et JH = 2 JI



1) POSITIONS RELATIVES DE DROITES ET DE PLANS

A) POSITIONS RELATIVES DE DEUX DROITES

d et d' sont non coplanaires	d et d' sont coplanaires	
Aucun plan ne les contient toutes les deux.	Elles sont sécantes.	Elles sont parallèles.
P d'	P d d'	P d'
Leur intersection est vide.	Elles ont un seul point en commun.	Elles sont strictement parallèles ou confondues.

Exemple:

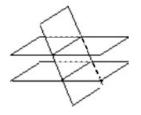
- Les droites (AB) et (HN)sont non coplanaires.
- Les droites (AB) et (JH) sont strictement parallèles.
- Les droites (AL) et (KF) sont sécantes en F dans le plan (AKL)

B) POSITIONS RELATIVES DE DEUX PLANS

P_1 et P_2 sont parallèles		P_1 et P_2 sont sécants
P_1 et P_2 confondus $P_1 = P_2$	P_1 et P_2 sont strictement parallèles	P_1 P_2 d
	Il existe deux droites sécantes de P_1 et deux droites sécantes de P_2 parallèles deux à deux.	Leur intersection est une droite.

Propriété d'incidence :

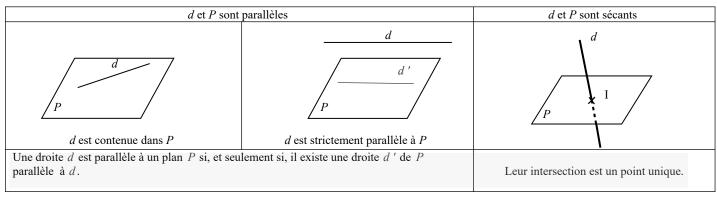
Si deux plans sont parallèles, alors tout plan qui coupe l'un coupe l'autre et les intersections sont des droites parallèles.



Exemple:

- Les plans (EKL) et (EGJ) sont sécants suivant la droite (EG)
- Les plans (EKL) et (JNM) sont strictement parallèles.
- Le plan (CDEF) coupe les plans parallèles (AEJD) et (BFIC) suivant les droites parallèles (ED) et (FC).

C) POSITIONS RELATIVES D'UNE DROITE ET D'UN PLAN



Exemple:

La droite (ED) est parallèle à la droite (FC) du plan (BFIC). On en déduit que (ED) est parallèle au plan (BFIC).

2) VECTEURS DE L'ESPACE

Comme dans le plan, à tout couple de points A et B de l'espace, on associe le vecteur \overrightarrow{AB} .

• Lorsque $A \neq B$, la direction de \overline{AB} est celle de la droite (AB), le sens de \overline{AB} est le sens de A vers B et la longueur ou norme de \overline{AB} , notée $||\overline{AB}||$, est la distance AB.

Lorsque A = B, \overline{AA} est le vecteur nul, noté $\vec{0}$.

- On désigne souvent les vecteurs par une seule lettre, par exemple \vec{u} , \vec{v} , \vec{w} ...
- Pour tout point O de l'espace et pour tout vecteur \vec{u} , il existe un unique point \vec{M} tel que $\vec{OM} = \vec{u}$.

A) VECTEURS ÉGAUX

Chacune des propriétés suivantes signifie que les vecteurs non nuls \overrightarrow{AB} et \overrightarrow{DC} sont égaux :

- \overrightarrow{AB} et \overrightarrow{DC} ont même direction, même sens et même norme.
- ABCD est un parallélogramme, c'est à dire [AC] et [BD] ont même milieu . (Si A, B, C et D sont alignés, on dit que ABCD est un parallélogramme aplati)

B) RÈGLES DE CALCUL

Les règles de calcul sur les vecteurs de l'espace sont analogues aux règles de calcul sur les vecteurs du plan.

• RELATION DE CHASLES :

Exemple:
$$\overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AF}$$

$$\overrightarrow{AD} + \overrightarrow{DI} = \overrightarrow{AI}$$

$$\overrightarrow{DE} + \overrightarrow{KL} = \overrightarrow{DE} + \overrightarrow{EG} = \overrightarrow{DG}$$

• RÈGLE DU PARALLÉLOGRAMME :

Exemple:
$$\overrightarrow{DC} + \overrightarrow{DJ} = \overrightarrow{DI}$$

$$\overrightarrow{JN} + \overrightarrow{JH} = \overrightarrow{JM}$$

$$\overrightarrow{DC} + \overrightarrow{DJ} + \overrightarrow{DA} = \overrightarrow{DI} + \overrightarrow{DA} = \overrightarrow{DF}$$

• OPPOSÉ D'UN VECTEUR :

Exemple:
$$\overrightarrow{AB} = -\overrightarrow{FE}$$

• MULTIPLICATION D'UN VECTEUR PAR UN RÉEL :

Pour tous réels a et b, et pour tous vecteurs \vec{u} et \vec{v} on a : $a(\vec{u}+\vec{v})=a\ \vec{u}+a\ \vec{v}$, $(a+b)\ \vec{u}=a\ \vec{u}+b\ \vec{u}$, $a(b\ \vec{u})=(ab)\ \vec{u}$, $a\ \vec{u}=\vec{0} \Leftrightarrow a=0$ ou $\vec{u}=\vec{0}$ etc ...

C) VECTEURS COLINÉAIRES

- Deux vecteurs non nuls \vec{u} et \vec{v} qui ont la même direction sont dits colinéaires. Par convention le vecteur nul est colinéaire à tout autre vecteur.
- Dire que deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires revient à dire qu'il existe un réel k tel que $\vec{u} = k \vec{v}$
- Dire que les points A, B et C (distincts) sont alignés revient à dire qu'il existe $k \in \mathbb{R}$ tel que $\overline{AB} = k \ \overline{AC}$.

D) TRANSLATION

Comme dans le plan, on peut définir une translation dans l'espace.

Définition:

Soit \overrightarrow{u} vecteur de l'espace.

<u>La translation</u> de vecteur \vec{u} est la transformation de l'espace notée souvent $t_{\vec{u}}$ qui à tout point M de l'espace associe le point M', tel que : $\overrightarrow{MM'} = \overrightarrow{u}$

Exemple:

- F est l'image de I par la translation de vecteur DA
- F est l'image de C par la translation de vecteur DE

3) INTERPRÉTATION VECTORIELLE DES DROITES ET PLANS DE L'ESPACE

A) DROITES

Définition:

Soit d une droite. On appelle <u>vecteurs directeurs</u> de d les vecteurs, non nuls, définis par deux points de d.

Soit A un point de l'espace et \vec{u} un vecteur non nul.

 $(A; \vec{u})$ représente la droite qui passe par A et de direction, la direction de \vec{u} .

Remarques:

- La droite $(A; \vec{u})$ est l'ensemble des points M de l'espace tels que \overline{AM} et \vec{u} sont colinéaires, c'est à dire tels qu'il existe un réel k vérifiant $\overline{AM} = k \vec{u}$.
- Dire que les droites (AB) et (CD) sont parallèles revient à dire que les vecteurs \overline{AB} et \overline{CD} sont colinéaires, c'est à dire qu'il existe $k \in \mathbb{R}^*$ tel que $\overrightarrow{AB} = k \overrightarrow{CD}$.

Conséquence:

Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs son colinéaires.

B) PLANS

PLAN DÉTERMINÉ PAR TROIS POINTS

Propriété:

Soit A, B et C trois points non alignés.

Le plan (ABC) est l'ensemble des points M de l'espace tels qu'il existe des réels x et y vérifiant $\overline{AM} = x \overline{AB} + y \overline{AC}$

Preuve:

On pose $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$

- Le repère $(A;\vec{u},\vec{v})$ est un repère de (ABC) . Ainsi, pour tout point M du plan, il existe un unique couple de réels (x; y) tels que $\overline{AM} = x \vec{u} + y \vec{v}$
- Réciproquement, soit M un point de l'espace tel qu'il existe deux réels x et y vérifiant $\overline{AM} = x \vec{u} + y \vec{v}$. On note M_1 et M_2 les points définis par $\overline{AM_1} = x \ \overline{AB}$ et $\overline{AM_2} = y \ \overline{AC}$

L'égalité $\overline{AM_1} = x \overline{AB}$ prouve que M_1 est sur (AB), donc dans le plan (ABC). De même M_2 est sur (AC), donc dans le plan (ABC). D'autre part on a $\overline{AM} = \overline{AM_1} + \overline{AM_2}$, donc $AM_1 MM_2$ est un parallélogramme.

Les sommets A, M_1 et M_2 sont dans le plan (ABC), il en est donc de même pour le quatrième sommet M.

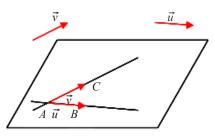
On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont **des vecteurs directeurs** du plan (ABC).

PLAN DÉFINI PAR UN POINT ET UN COUPLE DE VECTEURS NON COLINÉAIRES

Un point \vec{A} et deux vecteurs \vec{u} et \vec{v} non colinéaires déterminent un unique plan : le plan (ABC) où $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$.

On note $(A; \vec{u}, \vec{v})$ ce plan

 $(A; \vec{u}, \vec{v})$ est l'ensemble des points M de l'espace tels qu'il existe deux réels x et y vérifiant $\overrightarrow{AM} = x \vec{u} + y \vec{v}$.



Vocabulaire à connaître :

- On dit
 - que les vecteurs \vec{u} et \vec{v} sont <u>des vecteurs directeurs</u> du plan (ABC),
 - ou qu'ils définissent <u>la direction</u> du plan (ABC),
 - ou que le plan (ABC) est **dirigé** par \vec{u} et \vec{v} ,
 - ou que $(\overrightarrow{u}, \overrightarrow{v})$ est une <u>base</u> des vecteurs du plan (ABC).
- Si on peut écrire un vecteur \overrightarrow{w} sous la forme $a\overrightarrow{u}+b\overrightarrow{v}$, on dit que \overrightarrow{w} s'exprime comme <u>une combinaison linéaire</u> des vecteurs \overrightarrow{u} et \overrightarrow{v} .
- La seule combinaison linéaire des vecteurs \vec{u} et \vec{v} égale au vecteurs nul est celle (dite triviale) dont tous les coefficients sont nuls. On dit que les deux vecteurs \vec{u} et \vec{v} sont <u>linéairement indépendants</u>.

Remarque:

Si \overrightarrow{u} , est un vecteur non nul colinéaire à \overrightarrow{u} , et \overrightarrow{v} , un vecteur non nul colinéaire à \overrightarrow{v} , alors le plan $(A; \overrightarrow{u}, \overrightarrow{v})$ est le même que le plan $(A; \overrightarrow{u}, \overrightarrow{v})$.

Exemple: Les plan $(A; \overline{DN}, \overline{KL})$ et $(A; \overline{AE}, \overline{AB})$ sont confondus.

Conséquences:

- Deux plans ayant même couple de vecteurs directeurs sont parallèles.
- Une droite d et un plan P sont parallèles si, et seulement si, un vecteur directeur \overline{w} de d est un vecteur du plan P, ce qui signifie que l'on peut exprimer \overline{w} comme une combinaison linéaire de deux vecteurs directeurs de P.

4) DÉCOMPOSITION DE VECTEURS

A) VECTEURS COPLANAIRES

Définition

Les vecteurs \vec{u} , \vec{v} , \vec{w} ,, de l'espace sont dits <u>coplanaires</u> lorsqu'un point O quelconque et les points A, B, C, ..., définis par $\overrightarrow{OA} = \vec{u}$, $\overrightarrow{OB} = \vec{v}$, $\overrightarrow{OC} = \vec{w}$, ..., sont coplanaires.

Cette définition ne dépend pas du point *O* choisi.

Remarques:

- Deux vecteurs sont toujours coplanaires.
- Si deux vecteurs \vec{u} et \vec{v} sont colinéaires, alors quel que soit le vecteur \vec{w} , les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires.

Exemple: Montrer que les vecteurs \overrightarrow{HM} , \overrightarrow{AL} et \overrightarrow{DC} sont coplanaires.

On a $\overrightarrow{HM} = \overrightarrow{AE}$ et $\overrightarrow{DC} = \overrightarrow{AB}$

Les points A, E, B et L étant coplanaires, on en déduit que les vecteurs \overrightarrow{HM} , \overrightarrow{AL} et \overrightarrow{DC} sont coplanaires.

Propriété:

 \vec{u} , \vec{v} et \vec{w} sont trois vecteurs de l'espace tels que \vec{u} et \vec{v} ne sont pas colinéaires.

Dire que \vec{u} , \vec{v} et \vec{w} sont coplanaires revient à dire qu'il existe des réels \vec{a} et \vec{b} tels que $\vec{w} = \vec{a} \cdot \vec{u} + \vec{b} \cdot \vec{v}$.

Preuve :

Soit O un point de l'espace. On considère les points A, B et C tels que $\overrightarrow{OA} = \overrightarrow{u}$, $\overrightarrow{OB} = \overrightarrow{v}$ et $\overrightarrow{OC} = \overrightarrow{w}$. \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires, les points O, A et B ne sont pas alignés et déterminent donc un plan, le plan (OAB). Par définition, dire que \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires revient à dire $C \in (OAB)$... ce qui revient à dire qu'il existe des réels a et b tels que $\overrightarrow{OC} = a$ $\overrightarrow{OA} + b$ \overrightarrow{OB} .

Remarque: Si trois vecteurs sont non coplanaires, alors aucun des trois ne peut se décomposer en fonction des deux autres.

B) VECTEURS NON COPLANAIRES – BASE DES VECTEURS DE L'ESPACE

Propriété:

Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs non coplanaires de l'espace.

Pour tout vecteur \vec{t} de l'espace, il existe un unique triplet (x; y; z) de réels tels que : $\vec{t} = x \vec{u} + y \vec{v} + z \vec{w}$

Preuve:

Existence:

Soit A, B, C, D et M des points tels que $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$, $\vec{w} = \overrightarrow{AD}$ et $\vec{t} = \overrightarrow{AM}$.

 \vec{u} et \vec{v} sont non colinéaires, sinon \vec{u} , \vec{v} et \vec{w} seraient coplanaires.

Ainsi A, B et C définissent un plan dont (A, \vec{u}, \vec{v}) est un repère.

La parallèle à la droite (AD) passant par M, dirigée par \vec{w} , qui n'est pas un vecteur du plan (ABC),

puisque \vec{u} , \vec{v} et \vec{w} sont non coplanaires, est sécante à ce plan en un point H.

 \overline{HM} et \overrightarrow{w} sont colinéaires, donc $\overline{HM} = z \overrightarrow{w}$, où z est un réel, et H appartient au plan (ABC),

donc $\overrightarrow{AH} = x \vec{u} + y \vec{v}$ (x et y réels)

Comme $\vec{t} = \overline{AM} = \overline{AH} + \overline{HM}$, on obtient l'existence d'un triplet (x; y; z) de réels tels que $\vec{t} = x \vec{u} + y \vec{v} + z \vec{w}$

On suppose que l'on a deux écritures : $\vec{t} = x \vec{u} + y \vec{v} + z \vec{w} = x' \vec{u} + y' \vec{v} + z' \vec{w}$

On a alors $(x - x')\vec{u} + (y - y')\vec{v} + (z - z')\vec{w} = \vec{0}$.

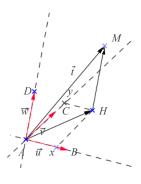
Supposons que l'une des trois différences n'est pas nulle, par exemple $(z-z')\neq 0$.

On obtient:

$$\overrightarrow{w} = \frac{x - x'}{(z - z')} \overrightarrow{u} + \frac{y - y'}{(z - z')} \overrightarrow{v}$$

Les vecteurs \vec{u} , \vec{v} et \vec{w} seraient alors coplanaires ... ce qui n'est pas possible.

On en déduit que z = z' et de la même façon que x = x' et y = y'.



Remarques:

- Encore une fois, on dit que l'on a décomposé le vecteur \vec{t} sous la forme d'une <u>combinaison linéaire</u> des vecteurs \vec{u} , \vec{v} et \vec{w} .
- \vec{u} , \vec{v} et \vec{w} sont <u>linéairement indépendants</u> et forment <u>une base</u> des vecteurs de l'espace.

5) REPÈRES DE L'ESPACE

Propriété et définitions :

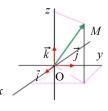
Soit O un point et $(\vec{i}, \vec{j}, \vec{k})$ une base des vecteurs de l'espace.

A tout point M de l'espace, on peut associer un unique triplet de réels (x; y; z) tel que :

$$\overrightarrow{OM} = x \vec{i} + y \vec{j} + z \vec{k}$$

On dit que (x; y; z) sont les **coordonnées** du point M dans le repère $(O; \vec{i}, \vec{j}, \vec{k})$ ou que

x, y et z sont respectivement <u>l'abscisse</u>, <u>l'ordonnée</u> et <u>la cote</u> du point M.



Exemple:

Dans le repère $(J; \overrightarrow{JD}, \overrightarrow{JI}, \overrightarrow{JE})$, on a D(1;0;0), K(-1;0;1) et L(-1;2;1)

Les propriétés et les règles de calcul vues dans le plan pour les coordonnées de vecteurs et de points se prolongent dans l'espace en ajoutant simplement une troisième coordonnée.

Propriétés:

Dans un repère donné de l'espace, soit $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{u'} \begin{pmatrix} a' \\ b' \end{pmatrix}$ deux vecteurs, A(x; y; z) et B(x'; y'; z') deux points.

- Pour tout réel k, le vecteur k \vec{u} a pour coordonnées $\begin{pmatrix} ka \\ kb \\ kc \end{pmatrix}$ Le vecteur \vec{AB} a pour coordonnées $\begin{pmatrix} x'-x' \\ y'-y \\ z'-z \end{pmatrix}$ Le milieu I de a pour coordonnées $\begin{pmatrix} x+x' \\ y'-z' \\ z'-z' \end{pmatrix}$