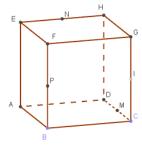
Produit scalaire dans l'espace

Pour les exercices 1 à 4, on considère le cube ci-dessous de côté *a* . M, N, P et I sont les milieux respectifs de [CD], [EH], [BF] et [CG].



Ex 7-1: Vrai ou faux

- 1) $\overrightarrow{AB}.\overrightarrow{AC} = AB^2$
- 2) $\overrightarrow{AD}.\overrightarrow{AC} = AC^2$
- 7) $\overrightarrow{AC} \cdot \overrightarrow{AG} = a^2 \sqrt{6}$
- 3) $\overrightarrow{BC} \cdot \overrightarrow{AC} = \overrightarrow{EF} \cdot \overrightarrow{GE}$
- 8) $\overrightarrow{AC} \cdot \overrightarrow{AH} = 2a^2$
- 4) $\overrightarrow{AC}.\overrightarrow{AH} = \overrightarrow{AC}.\overrightarrow{AD}$
- 9) $\overrightarrow{AB}.\overrightarrow{FG} = \overrightarrow{0}$
- 5) $\overrightarrow{BD}.\overrightarrow{BH} = \overrightarrow{FH}^2$
- 10) $\overrightarrow{AD}.\overrightarrow{AG} = 0$
- 6) $\overrightarrow{BC} \cdot \overrightarrow{AC} = a^2 \sqrt{2}$
- 11) $\overrightarrow{BG}.\overrightarrow{EF}=0$

Ex 7-2: Calculer en projetant ...

Calculer en projetant orthogonalement l'un des vecteurs sur la droite portant l'autre vecteur ou éventuellement sur un plan contenant l'autre vecteur.

- 1) \overline{AG} . \overline{BG}
- 2) AD PG
- 3) DC. DI
- 4) \overrightarrow{AM} \overrightarrow{AD}

Ex 7-3 : Calculer en utilisant un repère ...

On se place dans le repère orthonormé $(A; \vec{i}, \vec{j}, \vec{k})$, tel que \vec{i} , \vec{j} et \vec{k} sont des vecteurs unitaires respectivement colinéaires et de même sens que les vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} . Calculer:

1) EI. PN

2) NI PM

3) BH . AC

Ex 7-4: Trouver un angle

En calculant de deux façons différentes le produit scalaire \overrightarrow{DN} . \overrightarrow{DI} , déterminer cos \widehat{NDI} , et déduire une valeur approchée à 10^{-1} près de \widehat{NDI} .

On peut utiliser le repère orthonormé $(A; \vec{i}, \vec{j}, \vec{k})$, tel que \vec{i} , \vec{j} et \vec{k} sont des vecteurs unitaires respectivement colinéaires et de même sens que les vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .

Pour les exercices 5 à 8, l'espace est muni d'un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$.

Ex 7-5: Triangle rectangle

Soit A(3;4;-2), B(1;6;0) et C(-2;2;1)

Montrer que le triangle ABC est rectangle et indiquer en quel point.

Démontrer une orthogonalité sans les vecteurs

Ex 7-8: Vrai ou faux

Dans l'espace :

- 1) Deux droites orthogonales à une même droite sont parallèles entre elles.
- 2) Deux droites orthogonales à un même plan sont parallèles entre elles.
- 3) Deux plans orthogonaux à une même droite sont parallèles entre eux.

Ex 7-6 : Triangle isocèle

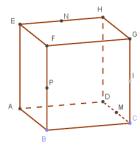
Soit M(3;-4;-2), N(-1;3;2) et P(7;-1;3)

Démontrer que MNP est isocèle et déterminer à 10^{-1} près tous les angles du triangle.

Ex 7-9: Entre deux droites

Dans le cube ABCDEFGH, dans chacun des cas montrer que les droites sont orthogonales :

1) (FG) et (AB)



2) (HG) et (FG)

3) (EB) et (GD)

Ex 7-7: Parallélogramme

Soit E(-3;2;1), F(1;-1;3), G(5;1;-3) et H(1;4;-5)

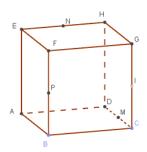
Montrer que EFGH est un quadrilatère puis déterminer sa nature.

4) (NF) et (HD)

Ex 7-10: Entre une droite et un plan

Dans le cube ABCDEFGH, dans chacun des cas montrer que la droite et le plan sont orthogonaux :

1) (AB) et (BFG)

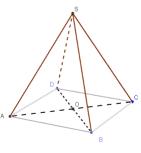


2) (DG) et (BCE)

4) (MI) et (CHE)

Ex 7-11 : Dans une pyramide à base carrée

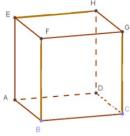
Soit la pyramide SABCD régulière à base carrée ci-contre . On note I le milieu de [BC]. 1) Démontrer que les droites (SO) et (BC) sont orthogonales.



2) En déduire que la droite (BC) est orthogonale au plan (SOI).

Ex 7-12 : En utilisant la trigonométrie

Soit un cube ABCDEFGH de côté 4 cm et le point O centre du carré EFGH.



1) Déterminer l'intersection des plans (EDG) et (HFB).

2) Calculer tan \widehat{HDO} et tan \widehat{DBH} .

3) En déduire que les droites (HB) et (DO) sont orthogonales.

4) Démontrer que les droites (HD) et (EG) sont orthogonales.

5) En déduire que la droite (EG) est orthogonale au plan (HFB), puis orthogonale à la droite (HB).

6) Démontrer que la droite (HB) est orthogonale au plan (DEG).

Démontrer une orthogonalité avec les vecteurs

Dans la suite, l'espace est muni d'un repère orthonormé $(O; \overline{i}, \overline{f}, \overline{k})$.

<u>Ex 7-13</u>: Trouver a et b

Déterminer les réels a et b pour que les vecteurs $\overline{u}\begin{pmatrix} 2\\-5\\a\end{pmatrix}$ et $\overline{v}\begin{pmatrix} -3\\1\\b\end{pmatrix}$ soient orthogonaux.

Ex 7-14: Droites perpendiculaires – droites orthogonales

Soit les points A(0;4;2), B(-1;-3;-2), C(1;1;1) et D(2;2;-1) 1) Les droites (AB) et (BD) sont-elles perpendiculaires ?

2) Les droites (AB) et (CD) sont-elles orthogonales?

Ex 7-15 : Projeté orthogonal sur une droite – distance d'un point à une droite

Soit les points A(0;-1;3) et B(-1;2;5).

1) Montrer que le point $\ H(1;-4;1)\$ est le projeté orthogonal du point $C(5;-2;0)\$ sur la droite $\ (AB)$.

2) En déduire la distance du point C à la droite (AB).

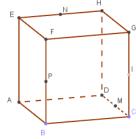
Ex 7-16: Plan médiateur

Définition :

Dans l'espace, **le plan médiateur** d'un segment est constitué des points équidistants des extrémités de ce segment. Il s'agit du plan passant par le milieu du segment et orthogonal à ce segment.

Dans le cube ABCDEFGH :

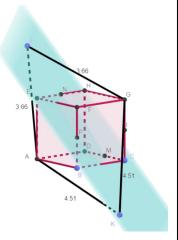
1) Justifier que les vecteurs $\ \overline{BE} \ \ et \ \overline{DF} \ \ sont$ orthogonaux.



2) Démontrer que (DF) est perpendiculaire à (BEG).

3) (BEG) est-il le plan médiateur de [DF]?

4) Déterminer l'ensemble des points équidistants de A et G.



- 5) On note I le milieu de [PN].
- a) Montrer que les vecteurs \overrightarrow{MI} et \overrightarrow{PN} sont orthogonaux.

b) En déduire l'aire du triangle MNP.

Ex 7-17 : Distance d'un point à un plan – volume d'un tétraèdre

Rappel: le volume d'un tétraèdre est $\frac{base \times hauteun}{3}$

Dans un cube ABCDEFGH de côté 1, on considère les points M, N et P centres respectifs des faces EFGH, BCGF et ABFE. On considère le repère orthonormé $(A; \overline{AB}, \overline{AD}, \overline{AE})$

- 1) Calculer les produits scalaires \overrightarrow{DF} . \overrightarrow{MP} et \overrightarrow{DF} . \overrightarrow{NP} .
- 2) Montrer que (DF) est perpendiculaire à (MNP).
- 3) Soit T le point d'intersection de (DF) et (MNP). Montrer que T est le projeté orthogonal de N sur (DF).
- 4) En calculant de deux façons différentes le produit scalaire $\ \overline{DF}$. $\ \overline{DN}$, déterminer la distance du point D au plan (MNP)

6) En déduire le volume du tétraèdre DMNP.

